These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 26120359)
41. Identifying differential alternative splicing events from RNA sequencing data using RNASeq-MATS. Park JW; Tokheim C; Shen S; Xing Y Methods Mol Biol; 2013; 1038():171-9. PubMed ID: 23872975 [TBL] [Abstract][Full Text] [Related]
42. A linear-time algorithm for finding a maximum-length ORF in a splice graph. Jaromczyk JW; Moore N; Schardl CL Int J Comput Biol Drug Des; 2012; 5(3-4):284-97. PubMed ID: 23013654 [TBL] [Abstract][Full Text] [Related]
44. Exact and heuristic algorithms for weighted cluster editing. Rahmann S; Wittkop T; Baumbach J; Martin M; Truss A; Böcker S Comput Syst Bioinformatics Conf; 2007; 6():391-401. PubMed ID: 17951842 [TBL] [Abstract][Full Text] [Related]
45. Transduction on Directed Graphs via Absorbing Random Walks. De J; Zhang X; Lin F; Cheng L; De J; Xiaowei Zhang ; Feng Lin ; Li Cheng ; De J; Cheng L; Zhang X; Lin F IEEE Trans Pattern Anal Mach Intell; 2018 Jul; 40(7):1770-1784. PubMed ID: 28809671 [TBL] [Abstract][Full Text] [Related]
46. ASGAL: aligning RNA-Seq data to a splicing graph to detect novel alternative splicing events. Denti L; Rizzi R; Beretta S; Vedova GD; Previtali M; Bonizzoni P BMC Bioinformatics; 2018 Nov; 19(1):444. PubMed ID: 30458725 [TBL] [Abstract][Full Text] [Related]
47. Querying graphs in protein-protein interactions networks using feedback vertex set. Blin G; Sikora F; Vialette S IEEE/ACM Trans Comput Biol Bioinform; 2010; 7(4):628-35. PubMed ID: 20498512 [TBL] [Abstract][Full Text] [Related]
48. An algebraic geometry approach to protein structure determination from NMR data. Wang L; Mettu RR; Donald BR Proc IEEE Comput Syst Bioinform Conf; 2005; ():235-46. PubMed ID: 16447981 [TBL] [Abstract][Full Text] [Related]
49. Network Pollution Games. Anastasiadis E; Deng X; Krysta P; Li M; Qiao H; Zhang J Algorithmica; 2019; 81(1):124-166. PubMed ID: 30872881 [TBL] [Abstract][Full Text] [Related]
50. TraRECo: a greedy approach based de novo transcriptome assembler with read error correction using consensus matrix. Yoon S; Kim D; Kang K; Park WJ BMC Genomics; 2018 Sep; 19(1):653. PubMed ID: 30180798 [TBL] [Abstract][Full Text] [Related]
51. IPSEP-COLA: an incremental procedure for separation constraint layout of graphs. Dwyer T; Koren Y; Marriott K IEEE Trans Vis Comput Graph; 2006; 12(5):821-8. PubMed ID: 17080805 [TBL] [Abstract][Full Text] [Related]
52. The Complexity of Optimal Design of Temporally Connected Graphs. Akrida EC; Gąsieniec L; Mertzios GB; Spirakis PG Theory Comput Syst; 2017; 61(3):907-944. PubMed ID: 32025196 [TBL] [Abstract][Full Text] [Related]
53. The Edge-Disjoint Path Problem on Random Graphs by Message-Passing. Altarelli F; Braunstein A; Dall'Asta L; De Bacco C; Franz S PLoS One; 2015; 10(12):e0145222. PubMed ID: 26710102 [TBL] [Abstract][Full Text] [Related]
54. Neural network for graphs: a contextual constructive approach. Micheli A IEEE Trans Neural Netw; 2009 Mar; 20(3):498-511. PubMed ID: 19193509 [TBL] [Abstract][Full Text] [Related]
55. Exact parallel maximum clique algorithm for general and protein graphs. Depolli M; Konc J; Rozman K; Trobec R; Janežič D J Chem Inf Model; 2013 Sep; 53(9):2217-28. PubMed ID: 23965016 [TBL] [Abstract][Full Text] [Related]
56. Explaining a Weighted DAG with Few Paths for Solving Genome-Guided Multi-Assembly. Tomescu AI; Gagie T; Popa A; Rizzi R; Kuosmanen A; Mäkinen V IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(6):1345-54. PubMed ID: 26671806 [TBL] [Abstract][Full Text] [Related]
57. Aligning optical maps to de Bruijn graphs. Mukherjee K; Alipanahi B; Kahveci T; Salmela L; Boucher C Bioinformatics; 2019 Sep; 35(18):3250-3256. PubMed ID: 30698651 [TBL] [Abstract][Full Text] [Related]
58. A polynomial-time algorithm for de novo protein backbone structure determination from nuclear magnetic resonance data. Wang L; Mettu RR; Donald BR J Comput Biol; 2006 Sep; 13(7):1267-88. PubMed ID: 17037958 [TBL] [Abstract][Full Text] [Related]
59. Automatically created concept graphs using descriptive keywords in the medical domain. Diederich J; Balke WT Methods Inf Med; 2008; 47(3):241-50. PubMed ID: 18473091 [TBL] [Abstract][Full Text] [Related]
60. A novel model used to detect differential splice junctions as biomarkers in prostate cancer from RNA-Seq data. Rezaeian I; Tavakoli A; Cavallo-Medved D; Porter LA; Rueda L J Biomed Inform; 2016 Apr; 60():422-30. PubMed ID: 26992567 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]