These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 26120734)

  • 1. Self-Assembling Nano-Architectures Created from a Protein Nano-Building Block Using an Intermolecularly Folded Dimeric de Novo Protein.
    Kobayashi N; Yanase K; Sato T; Unzai S; Hecht MH; Arai R
    J Am Chem Soc; 2015 Sep; 137(35):11285-93. PubMed ID: 26120734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Assembling Supramolecular Nanostructures Constructed from de Novo Extender Protein Nanobuilding Blocks.
    Kobayashi N; Inano K; Sasahara K; Sato T; Miyazawa K; Fukuma T; Hecht MH; Song C; Murata K; Arai R
    ACS Synth Biol; 2018 May; 7(5):1381-1394. PubMed ID: 29690759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Assembling Lectin Nano-Block Oligomers Enhance Binding Avidity to Glycans.
    Irumagawa S; Hiemori K; Saito S; Tateno H; Arai R
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperstable
    Kimura N; Mochizuki K; Umezawa K; Hecht MH; Arai R
    ACS Synth Biol; 2020 Feb; 9(2):254-259. PubMed ID: 31951376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Domain-swapped dimeric structure of a stable and functional de novo four-helix bundle protein, WA20.
    Arai R; Kobayashi N; Kimura A; Sato T; Matsuo K; Wang AF; Platt JM; Bradley LH; Hecht MH
    J Phys Chem B; 2012 Jun; 116(23):6789-97. PubMed ID: 22397676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilization of short collagen-like triple helices by protein engineering.
    Frank S; Kammerer RA; Mechling D; Schulthess T; Landwehr R; Bann J; Guo Y; Lustig A; Bächinger HP; Engel J
    J Mol Biol; 2001 May; 308(5):1081-9. PubMed ID: 11352592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and construction of self-assembling supramolecular protein complexes using artificial and fusion proteins as nanoscale building blocks.
    Kobayashi N; Arai R
    Curr Opin Biotechnol; 2017 Aug; 46():57-65. PubMed ID: 28160725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Foldon, the natural trimerization domain of T4 fibritin, dissociates into a monomeric A-state form containing a stable beta-hairpin: atomic details of trimer dissociation and local beta-hairpin stability from residual dipolar couplings.
    Meier S; Güthe S; Kiefhaber T; Grzesiek S
    J Mol Biol; 2004 Dec; 344(4):1051-69. PubMed ID: 15544812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Very fast folding and association of a trimerization domain from bacteriophage T4 fibritin.
    Güthe S; Kapinos L; Möglich A; Meier S; Grzesiek S; Kiefhaber T
    J Mol Biol; 2004 Apr; 337(4):905-15. PubMed ID: 15033360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational thermostabilisation of four-helix bundle dimeric de novo proteins.
    Irumagawa S; Kobayashi K; Saito Y; Miyata T; Umetsu M; Kameda T; Arai R
    Sci Rep; 2021 Apr; 11(1):7526. PubMed ID: 33824364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of helical linkers for fusion proteins and protein-based nanostructures.
    Arai R
    Methods Enzymol; 2021; 647():209-230. PubMed ID: 33482989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The carboxy-terminal domain initiates trimerization of bacteriophage T4 fibritin.
    Letarov AV; Londer YY; Boudko SP; Mesyanzhinov VV
    Biochemistry (Mosc); 1999 Jul; 64(7):817-23. PubMed ID: 10424907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dimeric and trimeric solution structures of the multidomain complement protein properdin by X-ray scattering, analytical ultracentrifugation and constrained modelling.
    Sun Z; Reid KB; Perkins SJ
    J Mol Biol; 2004 Nov; 343(5):1327-43. PubMed ID: 15491616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective expression and purification of bioactive recombinant soluble LIGHT.
    Tsuji I; Iwamoto K; Shintani Y
    Methods Mol Biol; 2014; 1155():201-13. PubMed ID: 24788184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR structure of a monomeric intermediate on the evolutionarily optimized assembly pathway of a small trimerization domain.
    Habazettl J; Reiner A; Kiefhaber T
    J Mol Biol; 2009 May; 389(1):103-14. PubMed ID: 19361528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational de novo design of a self-assembling peptide with predefined structure.
    Kaltofen S; Li C; Huang PS; Serpell LC; Barth A; André I
    J Mol Biol; 2015 Jan; 427(2):550-62. PubMed ID: 25498388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 'Supramolecular wrapping chemistry' by helix-forming polysaccharides: a powerful strategy for generating diverse polymeric nano-architectures.
    Numata M; Shinkai S
    Chem Commun (Camb); 2011 Feb; 47(7):1961-75. PubMed ID: 21246150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and crystal structure of bacteriophage T4 mini-fibritin NCCF.
    Boudko SP; Strelkov SV; Engel J; Stetefeld J
    J Mol Biol; 2004 Jun; 339(4):927-35. PubMed ID: 15165860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3- Instead of 4-helix formation in a de novo designed protein in solution revealed by small-angle X-ray scattering.
    Høiberg-Nielsen R; Tofteng Shelton AP; Sørensen KK; Roessle M; Svergun DI; Thulstrup PW; Jensen KJ; Arleth L
    Chembiochem; 2008 Nov; 9(16):2663-72. PubMed ID: 18850602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Versatile C(3)-symmetric scaffolds and their use for covalent stabilization of the foldon trimer.
    Berthelmann A; Lach J; Gräwert MA; Groll M; Eichler J
    Org Biomol Chem; 2014 Apr; 12(16):2606-14. PubMed ID: 24637609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.