BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 26120776)

  • 1. Flavin-Protein Complexes: Aromatic Stacking Assisted by a Hydrogen Bond.
    Hamdane D; Bou-Nader C; Cornu D; Hui-Bon-Hoa G; Fontecave M
    Biochemistry; 2015 Jul; 54(28):4354-64. PubMed ID: 26120776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast photoinduced flavin dynamics in the unusual active site of the tRNA methyltransferase TrmFO.
    Dozova N; Lacombat F; Bou-Nader C; Hamdane D; Plaza P
    Phys Chem Chem Phys; 2019 Apr; 21(17):8743-8756. PubMed ID: 30968076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A catalytic intermediate and several flavin redox states stabilized by folate-dependent tRNA methyltransferase from Bacillus subtilis.
    Hamdane D; Guerineau V; Un S; Golinelli-Pimpaneau B
    Biochemistry; 2011 Jun; 50(23):5208-19. PubMed ID: 21561081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FAD/folate-dependent tRNA methyltransferase: flavin as a new methyl-transfer agent.
    Hamdane D; Argentini M; Cornu D; Golinelli-Pimpaneau B; Fontecave M
    J Am Chem Soc; 2012 Dec; 134(48):19739-45. PubMed ID: 23157377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of a unique flavin-dependent tRNA-methylating agent.
    Hamdane D; Bruch E; Un S; Field M; Fontecave M
    Biochemistry; 2013 Dec; 52(49):8949-56. PubMed ID: 24228791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytochrome b5 reductase: role of the si-face residues, proline 92 and tyrosine 93, in structure and catalysis.
    Marohnic CC; Crowley LJ; Davis CA; Smith ET; Barber MJ
    Biochemistry; 2005 Feb; 44(7):2449-61. PubMed ID: 15709757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox-induced changes in flavin structure and roles of flavin N(5) and the ribityl 2'-OH group in regulating PutA--membrane binding.
    Zhang W; Zhang M; Zhu W; Zhou Y; Wanduragala S; Rewinkel D; Tanner JJ; Becker DF
    Biochemistry; 2007 Jan; 46(2):483-91. PubMed ID: 17209558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Why the Flavin Adenine Dinucleotide (FAD) Cofactor Needs To Be Covalently Linked to Complex II of the Electron-Transport Chain for the Conversion of FADH
    Dourado DFAR; Swart M; Carvalho ATP
    Chemistry; 2018 Apr; 24(20):5246-5252. PubMed ID: 29124817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chloramphenicol biosynthesis: the structure of CmlS, a flavin-dependent halogenase showing a covalent flavin-aspartate bond.
    Podzelinska K; Latimer R; Bhattacharya A; Vining LC; Zechel DL; Jia Z
    J Mol Biol; 2010 Mar; 397(1):316-31. PubMed ID: 20080101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aromatic stacking interactions in flavin model systems.
    Nandwana V; Samuel I; Cooke G; Rotello VM
    Acc Chem Res; 2013 Apr; 46(4):1000-9. PubMed ID: 23163808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model systems for flavoenzyme activity: interplay of hydrogen bonding and aromatic stacking in cofactor redox modulation.
    Gray M; Goodman AJ; Carroll JB; Bardon K; Markey M; Cooke G; Rotello VM
    Org Lett; 2004 Feb; 6(3):385-8. PubMed ID: 14748599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The intraflavin hydrogen bond in human electron transfer flavoprotein modulates redox potentials and may participate in electron transfer.
    Dwyer TM; Mortl S; Kemter K; Bacher A; Fauq A; Frerman FE
    Biochemistry; 1999 Jul; 38(30):9735-45. PubMed ID: 10423253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flavin recognition by an RNA aptamer targeted toward FAD.
    Roychowdhury-Saha M; Lato SM; Shank ED; Burke DH
    Biochemistry; 2002 Feb; 41(8):2492-9. PubMed ID: 11851395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of Val-265 for flavin adenine dinucleotide (FAD) binding in pyruvate oxidase: FTIR, kinetic, and crystallographic studies on the enzyme variant V265A.
    Wille G; Ritter M; Weiss MS; König S; Mäntele W; Hübner G
    Biochemistry; 2005 Apr; 44(13):5086-94. PubMed ID: 15794646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flavoenzyme structure and function. Approaches using flavin analogues.
    Edmondson D; Ghisla S
    Methods Mol Biol; 1999; 131():157-79. PubMed ID: 10494549
    [No Abstract]   [Full Text] [Related]  

  • 16. Evidence for flavin movement in the function of p-hydroxybenzoate hydroxylase from studies of the mutant Arg220Lys.
    Moran GR; Entsch B; Palfey BA; Ballou DP
    Biochemistry; 1996 Jul; 35(28):9278-85. PubMed ID: 8703933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The bifunctional flavokinase/flavin adenine dinucleotide synthetase from Streptomyces davawensis produces inactive flavin cofactors and is not involved in resistance to the antibiotic roseoflavin.
    Grill S; Busenbender S; Pfeiffer M; Köhler U; Mack M
    J Bacteriol; 2008 Mar; 190(5):1546-53. PubMed ID: 18156273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the C-terminal extension stacked on the re-face of the isoalloxazine ring moiety of the flavin adenine dinucleotide prosthetic group in ferredoxin-NADP(+) oxidoreductase from Bacillus subtilis.
    Seo D; Asano T; Komori H; Sakurai T
    Plant Physiol Biochem; 2014 Aug; 81():143-8. PubMed ID: 24529496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flavin conformational changes in the catalytic cycle of p-hydroxybenzoate hydroxylase substituted with 6-azido- and 6-aminoflavin adenine dinucleotide.
    Palfey BA; Ballou DP; Massey V
    Biochemistry; 1997 Dec; 36(50):15713-23. PubMed ID: 9398300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.