BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

512 related articles for article (PubMed ID: 26120964)

  • 21. Conflicts between local and global spatial frameworks dissociate neural representations of the lateral and medial entorhinal cortex.
    Neunuebel JP; Yoganarasimha D; Rao G; Knierim JJ
    J Neurosci; 2013 May; 33(22):9246-58. PubMed ID: 23719794
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Complementary Functional Organization of Neuronal Activity Patterns in the Perirhinal, Lateral Entorhinal, and Medial Entorhinal Cortices.
    Keene CS; Bladon J; McKenzie S; Liu CD; O'Keefe J; Eichenbaum H
    J Neurosci; 2016 Mar; 36(13):3660-75. PubMed ID: 27030753
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cell Type-Specific Differences in Spike Timing and Spike Shape in the Rat Parasubiculum and Superficial Medial Entorhinal Cortex.
    Ebbesen CL; Reifenstein ET; Tang Q; Burgalossi A; Ray S; Schreiber S; Kempter R; Brecht M
    Cell Rep; 2016 Jul; 16(4):1005-1015. PubMed ID: 27425616
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phase relations of theta oscillations in a computer model of the hippocampal CA1 field: Key role of Schaffer collaterals.
    Mysin IE; Kitchigina VF; Kazanovich YB
    Neural Netw; 2019 Aug; 116():119-138. PubMed ID: 31029053
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Novel Mechanism for the Grid-to-Place Cell Transformation Revealed by Transgenic Depolarization of Medial Entorhinal Cortex Layer II.
    Kanter BR; Lykken CM; Avesar D; Weible A; Dickinson J; Dunn B; Borgesius NZ; Roudi Y; Kentros CG
    Neuron; 2017 Mar; 93(6):1480-1492.e6. PubMed ID: 28334610
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Theta- and movement velocity-related firing of hippocampal neurons is disrupted by lesions centered on the perirhinal cortex.
    Muir GM; Bilkey DK
    Hippocampus; 2003; 13(1):93-108. PubMed ID: 12625461
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hippocampus-independent phase precession in entorhinal grid cells.
    Hafting T; Fyhn M; Bonnevie T; Moser MB; Moser EI
    Nature; 2008 Jun; 453(7199):1248-52. PubMed ID: 18480753
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hippocampal CA1 replay becomes less prominent but more rigid without inputs from medial entorhinal cortex.
    Chenani A; Sabariego M; Schlesiger MI; Leutgeb JK; Leutgeb S; Leibold C
    Nat Commun; 2019 Mar; 10(1):1341. PubMed ID: 30902981
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phase precession of medial prefrontal cortical activity relative to the hippocampal theta rhythm.
    Jones MW; Wilson MA
    Hippocampus; 2005; 15(7):867-73. PubMed ID: 16149084
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Firing relations of medial entorhinal neurons to the hippocampal theta rhythm in urethane anesthetized and walking rats.
    Stewart M; Quirk GJ; Barry M; Fox SE
    Exp Brain Res; 1992; 90(1):21-8. PubMed ID: 1521610
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Progressive increase in grid scale from dorsal to ventral medial entorhinal cortex.
    Brun VH; Solstad T; Kjelstrup KB; Fyhn M; Witter MP; Moser EI; Moser MB
    Hippocampus; 2008; 18(12):1200-12. PubMed ID: 19021257
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unstable CA1 place cell representation in rats with entorhinal cortex lesions.
    Van Cauter T; Poucet B; Save E
    Eur J Neurosci; 2008 Apr; 27(8):1933-46. PubMed ID: 18412614
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of boundary removal on the spatial representations of the medial entorhinal cortex.
    Savelli F; Yoganarasimha D; Knierim JJ
    Hippocampus; 2008; 18(12):1270-82. PubMed ID: 19021262
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatial information outflow from the hippocampal circuit: distributed spatial coding and phase precession in the subiculum.
    Kim SM; Ganguli S; Frank LM
    J Neurosci; 2012 Aug; 32(34):11539-58. PubMed ID: 22915100
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrical and Network Neuronal Properties Are Preferentially Disrupted in Dorsal, But Not Ventral, Medial Entorhinal Cortex in a Mouse Model of Tauopathy.
    Booth CA; Ridler T; Murray TK; Ward MA; de Groot E; Goodfellow M; Phillips KG; Randall AD; Brown JT
    J Neurosci; 2016 Jan; 36(2):312-24. PubMed ID: 26758825
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GABAergic contributions to gating, timing, and phase precession of hippocampal neuronal activity during theta oscillations.
    Cutsuridis V; Hasselmo M
    Hippocampus; 2012 Jul; 22(7):1597-621. PubMed ID: 22252986
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impaired hippocampal rate coding after lesions of the lateral entorhinal cortex.
    Lu L; Leutgeb JK; Tsao A; Henriksen EJ; Leutgeb S; Barnes CA; Witter MP; Moser MB; Moser EI
    Nat Neurosci; 2013 Aug; 16(8):1085-93. PubMed ID: 23852116
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The positional firing properties of medial entorhinal neurons: description and comparison with hippocampal place cells.
    Quirk GJ; Muller RU; Kubie JL; Ranck JB
    J Neurosci; 1992 May; 12(5):1945-63. PubMed ID: 1578279
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two septal-entorhinal GABAergic projections differentially control coding properties of spatially tuned neurons in the medial entorhinal cortex.
    Schlesiger MI; Ruff T; MacLaren DAA; Barriuso-Ortega I; Saidov KM; Yen TY; Monyer H
    Cell Rep; 2021 Mar; 34(9):108801. PubMed ID: 33657367
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Downstream effects of hippocampal sharp wave ripple oscillations on medial entorhinal cortex layer V neurons in vitro.
    Roth FC; Beyer KM; Both M; Draguhn A; Egorov AV
    Hippocampus; 2016 Dec; 26(12):1493-1508. PubMed ID: 27479916
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.