BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 26121034)

  • 1. Combinatorial Effects of Fatty Acid Elongase Enzymes on Nervonic Acid Production in Camelina sativa.
    Huai D; Zhang Y; Zhang C; Cahoon EB; Zhou Y
    PLoS One; 2015; 10(6):e0131755. PubMed ID: 26121034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increase in nervonic acid content in transformed yeast and transgenic plants by introduction of a Lunaria annua L. 3-ketoacyl-CoA synthase (KCS) gene.
    Guo Y; Mietkiewska E; Francis T; Katavic V; Brost JM; Giblin M; Barton DL; Taylor DC
    Plant Mol Biol; 2009 Mar; 69(5):565-75. PubMed ID: 19082744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ectopic expression of cDNAs from larkspur (Consolida ajacis) for increased synthesis of gondoic acid (cis-11 eicosenoic acid) and its positional redistribution in seed triacylglycerol of Camelina sativa.
    Sarvas C; Puttick D; Forseille L; Cram D; Smith MA
    Planta; 2021 Jul; 254(2):32. PubMed ID: 34287699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular cloning and characterization of a KCS gene from Cardamine graeca and its heterologous expression in Brassica oilseeds to engineer high nervonic acid oils for potential medical and industrial use.
    Taylor DC; Francis T; Guo Y; Brost JM; Katavic V; Mietkiewska E; Michael Giblin E; Lozinsky S; Hoffman T
    Plant Biotechnol J; 2009 Dec; 7(9):925-38. PubMed ID: 19843251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redirection of metabolic flux for high levels of omega-7 monounsaturated fatty acid accumulation in camelina seeds.
    Nguyen HT; Park H; Koster KL; Cahoon RE; Nguyen HT; Shanklin J; Clemente TE; Cahoon EB
    Plant Biotechnol J; 2015 Jan; 13(1):38-50. PubMed ID: 25065607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Camelina seed transcriptome: a tool for meal and oil improvement and translational research.
    Nguyen HT; Silva JE; Podicheti R; Macrander J; Yang W; Nazarenus TJ; Nam JW; Jaworski JG; Lu C; Scheffler BE; Mockaitis K; Cahoon EB
    Plant Biotechnol J; 2013 Aug; 11(6):759-69. PubMed ID: 23551501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extending the story of very-long-chain fatty acid elongation.
    Haslam TM; Kunst L
    Plant Sci; 2013 Sep; 210():93-107. PubMed ID: 23849117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fatty acid condensing enzyme from Physaria fendleri increases hydroxy fatty acid accumulation in transgenic oilseeds of Camelina sativa.
    Snapp AR; Kang J; Qi X; Lu C
    Planta; 2014 Sep; 240(3):599-610. PubMed ID: 25023632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional characterization and structural modelling of Helianthus annuus (sunflower) ketoacyl-CoA synthases and their role in seed oil composition.
    González-Mellado D; Salas JJ; Venegas-Calerón M; Moreno-Pérez AJ; Garcés R; Martínez-Force E
    Planta; 2019 Jun; 249(6):1823-1836. PubMed ID: 30847571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Down-regulation of crambe fatty acid desaturase and elongase in Arabidopsis and crambe resulted in significantly increased oleic acid content in seed oil.
    Li X; Mei D; Liu Q; Fan J; Singh S; Green A; Zhou XR; Zhu LH
    Plant Biotechnol J; 2016 Jan; 14(1):323-31. PubMed ID: 25998013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 3-ketoacyl-CoA synthase 11 (KCS11) homolog from Malania oleifera synthesizes nervonic acid in plants rich in 11Z-eicosenoic acid.
    Li Z; Ma S; Song H; Yang Z; Zhao C; Taylor D; Zhang M
    Tree Physiol; 2021 Feb; 41(2):331-342. PubMed ID: 33032322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Rhodosporidium toruloides for the production of very long-chain monounsaturated fatty acid-rich oils.
    Fillet S; Ronchel C; Callejo C; Fajardo MJ; Moralejo H; Adrio JL
    Appl Microbiol Biotechnol; 2017 Oct; 101(19):7271-7280. PubMed ID: 28812146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes.
    Hutcheon C; Ditt RF; Beilstein M; Comai L; Schroeder J; Goldstein E; Shewmaker CK; Nguyen T; De Rocher J; Kiser J
    BMC Plant Biol; 2010 Oct; 10():233. PubMed ID: 20977772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Class A lysophosphatidic acid acyltransferase 2 from Camelina sativa promotes very long-chain fatty acids accumulation in phospholipid and triacylglycerol.
    Yin Y; Raboanatahiry N; Chen K; Chen X; Tian T; Jia J; He H; He J; Guo Z; Yu L; Li M
    Plant J; 2022 Dec; 112(5):1141-1158. PubMed ID: 36209492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome analysis reveals crucial genes involved in the biosynthesis of nervonic acid in woody Malania oleifera oilseeds.
    Yang T; Yu Q; Xu W; Li DZ; Chen F; Liu A
    BMC Plant Biol; 2018 Oct; 18(1):247. PubMed ID: 30340521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutagenesis of the FAE1 genes significantly changes fatty acid composition in seeds of Camelina sativa.
    Ozseyhan ME; Kang J; Mu X; Lu C
    Plant Physiol Biochem; 2018 Feb; 123():1-7. PubMed ID: 29216494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Very long chain fatty acid synthesis in sunflower kernels.
    Salas JJ; Martínez-Force E; Garcés R
    J Agric Food Chem; 2005 Apr; 53(7):2710-6. PubMed ID: 15796615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional characterization of the Arabidopsis beta-ketoacyl-coenzyme A reductase candidates of the fatty acid elongase.
    Beaudoin F; Wu X; Li F; Haslam RP; Markham JE; Zheng H; Napier JA; Kunst L
    Plant Physiol; 2009 Jul; 150(3):1174-91. PubMed ID: 19439572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward production of jet fuel functionality in oilseeds: identification of FatB acyl-acyl carrier protein thioesterases and evaluation of combinatorial expression strategies in Camelina seeds.
    Kim HJ; Silva JE; Vu HS; Mockaitis K; Nam JW; Cahoon EB
    J Exp Bot; 2015 Jul; 66(14):4251-65. PubMed ID: 25969557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing microRNA167A expression in seed decreases the α-linolenic acid content and increases seed size in Camelina sativa.
    Na G; Mu X; Grabowski P; Schmutz J; Lu C
    Plant J; 2019 Apr; 98(2):346-358. PubMed ID: 30604453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.