These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 26121062)

  • 21. Probing interfacial interactions using core-satellite plasmon rulers.
    Yoon JH; Yoon S
    Langmuir; 2013 Dec; 29(48):14772-8. PubMed ID: 24236506
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNA-directed gold nanodimers with tunable sizes and interparticle distances and their surface plasmonic properties.
    Lan X; Chen Z; Liu BJ; Ren B; Henzie J; Wang Q
    Small; 2013 Jul; 9(13):2308-15. PubMed ID: 23401271
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a long-range surface-enhanced Raman spectroscopy ruler.
    Singh AK; Khan SA; Fan Z; Demeritte T; Senapati D; Kanchanapally R; Ray PC
    J Am Chem Soc; 2012 May; 134(20):8662-9. PubMed ID: 22559168
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reversible Shrinkage of DNA-Functionalized Gold Nanoparticle Assemblies Revealed by Surface Plasmon Resonance.
    Wang G; Yu L; Akiyama Y; Takarada T; Maeda M
    Biotechnol J; 2018 Dec; 13(12):e1800090. PubMed ID: 30052321
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrahigh-Sensitivity Sandwiched Plasmon Ruler for Label-Free Clinical Diagnosis.
    Nan J; Zhu S; Ye S; Sun W; Yue Y; Tang X; Shi J; Xu X; Zhang J; Yang B
    Adv Mater; 2020 Jan; 32(2):e1905927. PubMed ID: 31782568
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization.
    Moon S; Kim Y; Oh Y; Lee H; Kim HC; Lee K; Kim D
    Biosens Bioelectron; 2012 Feb; 32(1):141-7. PubMed ID: 22197101
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploration of the Kinetics of Toehold-Mediated Strand Displacement via Plasmon Rulers.
    Li MX; Xu CH; Zhang N; Qian GS; Zhao W; Xu JJ; Chen HY
    ACS Nano; 2018 Apr; 12(4):3341-3350. PubMed ID: 29578338
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasmonic response of DNA-assembled gold nanorods: effect of DNA linker length, temperature and linker/nanoparticles ratio.
    Vial S; Nykypanchuk D; Deepak FL; Prado M; Gang O
    J Colloid Interface Sci; 2014 Nov; 433():34-42. PubMed ID: 25112910
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single-Particle Spectroscopic Study on Fluorescence Enhancement by Plasmon Coupled Gold Nanorod Dimers Assembled on DNA Origami.
    Zhang T; Gao N; Li S; Lang MJ; Xu QH
    J Phys Chem Lett; 2015 Jun; 6(11):2043-9. PubMed ID: 26266500
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conformational Dynamics of a Single Protein Monitored for 24 h at Video Rate.
    Ye W; Götz M; Celiksoy S; Tüting L; Ratzke C; Prasad J; Ricken J; Wegner SV; Ahijado-Guzmán R; Hugel T; Sönnichsen C
    Nano Lett; 2018 Oct; 18(10):6633-6637. PubMed ID: 30251862
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single particle plasmon spectroscopy of silver nanowires and gold nanorods.
    N'Gom M; Ringnalda J; Mansfield JF; Agarwal A; Kotov N; Zaluzec NJ; Norris TB
    Nano Lett; 2008 Oct; 8(10):3200-4. PubMed ID: 18778109
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface plasmon resonance biosensor for sensitive detection of microRNA and cancer cell using multiple signal amplification strategy.
    Liu R; Wang Q; Li Q; Yang X; Wang K; Nie W
    Biosens Bioelectron; 2017 Jan; 87():433-438. PubMed ID: 27589408
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape.
    Tabor C; Murali R; Mahmoud M; El-Sayed MA
    J Phys Chem A; 2009 Mar; 113(10):1946-53. PubMed ID: 19090688
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanoscopic optical rulers beyond the FRET distance limit: fundamentals and applications.
    Ray PC; Fan Z; Crouch RA; Sinha SS; Pramanik A
    Chem Soc Rev; 2014 Sep; 43(17):6370-404. PubMed ID: 24902784
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DNA-Modulated Plasmon Resonance: Methods and Optical Applications.
    Peng T; Li X; Li K; Nie Z; Tan W
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):14741-14760. PubMed ID: 32154704
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A plasmon ruler based on nanoscale photothermal effect.
    Zhang W; Li Q; Qiu M
    Opt Express; 2013 Jan; 21(1):172-81. PubMed ID: 23388908
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Overcoming the Coupling Dilemma in DNA-Programmable Nanoparticle Assemblies by "Ag+ Soldering".
    Wang H; Li Y; Liu M; Gong M; Deng Z
    Small; 2015 May; 11(19):2247-51. PubMed ID: 25641776
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plasmon ruler with gold nanorod dimers: utilizing the second-order resonance.
    Shcherbakov MR; Le AT; Dubrovina N; Lupu A; Fedyanin AA
    Opt Lett; 2015 Apr; 40(7):1571-4. PubMed ID: 25831387
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A wavelength-modulated localized surface plasmon resonance (LSPR) optical fiber sensor for sensitive detection of mercury(II) ion by gold nanoparticles-DNA conjugates.
    Jia S; Bian C; Sun J; Tong J; Xia S
    Biosens Bioelectron; 2018 Aug; 114():15-21. PubMed ID: 29775854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.