These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 26121262)

  • 1. Relating Essential Proteins to Drug Side-Effects Using Canonical Component Analysis: A Structure-Based Approach.
    Liu T; Altman RB
    J Chem Inf Model; 2015 Jul; 55(7):1483-94. PubMed ID: 26121262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the associations between drug side-effects and therapeutic indications.
    Wang F; Zhang P; Cao N; Hu J; Sorrentino R
    J Biomed Inform; 2014 Oct; 51():15-23. PubMed ID: 24727480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drug side-effect prediction based on the integration of chemical and biological spaces.
    Yamanishi Y; Pauwels E; Kotera M
    J Chem Inf Model; 2012 Dec; 52(12):3284-92. PubMed ID: 23157436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating drug-target association and dissociation mechanisms using metadynamics-based algorithms.
    Cavalli A; Spitaleri A; Saladino G; Gervasio FL
    Acc Chem Res; 2015 Feb; 48(2):277-85. PubMed ID: 25496113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Network-Based Drug-Target Interaction Prediction with Probabilistic Soft Logic.
    Fakhraei S; Huang B; Raschid L; Getoor L
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(5):775-87. PubMed ID: 26356852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GESSE: Predicting Drug Side Effects from Drug-Target Relationships.
    PĂ©rez-Nueno VI; Souchet M; Karaboga AS; Ritchie DW
    J Chem Inf Model; 2015 Sep; 55(9):1804-23. PubMed ID: 26251970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining automatic table classification and relationship extraction in extracting anticancer drug-side effect pairs from full-text articles.
    Xu R; Wang Q
    J Biomed Inform; 2015 Feb; 53():128-35. PubMed ID: 25445920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive prediction of drug-protein interactions and side effects for the human proteome.
    Zhou H; Gao M; Skolnick J
    Sci Rep; 2015 Jun; 5():11090. PubMed ID: 26057345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kernel-based data fusion improves the drug-protein interaction prediction.
    Wang YC; Zhang CH; Deng NY; Wang Y
    Comput Biol Chem; 2011 Dec; 35(6):353-62. PubMed ID: 22099632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of drug-induced myocardial infarction-related protein targets through the prediction of drug-target interactions and analysis of biological processes.
    Ivanov SM; Lagunin AA; Pogodin PV; Filimonov DA; Poroikov VV
    Chem Res Toxicol; 2014 Jul; 27(7):1263-81. PubMed ID: 24920530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of potential drug targets based on simple sequence properties.
    Li Q; Lai L
    BMC Bioinformatics; 2007 Sep; 8():353. PubMed ID: 17883836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An algorithmic framework for predicting side effects of drugs.
    Atias N; Sharan R
    J Comput Biol; 2011 Mar; 18(3):207-18. PubMed ID: 21385029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A unified frame of predicting side effects of drugs by using linear neighborhood similarity.
    Zhang W; Yue X; Liu F; Chen Y; Tu S; Zhang X
    BMC Syst Biol; 2017 Dec; 11(Suppl 6):101. PubMed ID: 29297371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DSEP: A Tool Implementing Novel Method to Predict Side Effects of Drugs.
    Niu SY; Xin MY; Luo J; Liu MY; Jiang ZR
    J Comput Biol; 2015 Dec; 22(12):1108-17. PubMed ID: 26484391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Data-Driven Approach to Predicting Successes and Failures of Clinical Trials.
    Gayvert KM; Madhukar NS; Elemento O
    Cell Chem Biol; 2016 Oct; 23(10):1294-1301. PubMed ID: 27642066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting drug side-effect profiles: a chemical fragment-based approach.
    Pauwels E; Stoven V; Yamanishi Y
    BMC Bioinformatics; 2011 May; 12():169. PubMed ID: 21586169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational chemistry approach for the early detection of drug-induced idiosyncratic liver toxicity.
    Cruz-Monteagudo M; Cordeiro MN; Borges F
    J Comput Chem; 2008 Mar; 29(4):533-49. PubMed ID: 17705164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalized enrichment analysis improves the detection of adverse drug events from the biomedical literature.
    Winnenburg R; Shah NH
    BMC Bioinformatics; 2016 Jun; 17():250. PubMed ID: 27333889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenotypic side effects prediction by optimizing correlation with chemical and target profiles of drugs.
    Kanji R; Sharma A; Bagler G
    Mol Biosyst; 2015 Nov; 11(11):2900-6. PubMed ID: 26252576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative prediction of drug side effects based on drug-related features.
    Niu Y; Zhang W
    Interdiscip Sci; 2017 Sep; 9(3):434-444. PubMed ID: 28516319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.