BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 26121406)

  • 1. Protein structure determination by combining sparse NMR data with evolutionary couplings.
    Tang Y; Huang YJ; Hopf TA; Sander C; Marks DS; Montelione GT
    Nat Methods; 2015 Aug; 12(8):751-4. PubMed ID: 26121406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining Evolutionary Covariance and NMR Data for Protein Structure Determination.
    Huang YJ; Brock KP; Ishida Y; Swapna GVT; Inouye M; Marks DS; Sander C; Montelione GT
    Methods Enzymol; 2019; 614():363-392. PubMed ID: 30611430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Hybrid Approach for Protein Structure Determination Combining Sparse NMR with Evolutionary Coupling Sequence Data.
    Huang YJ; Brock KP; Sander C; Marks DS; Montelione GT
    Adv Exp Med Biol; 2018; 1105():153-169. PubMed ID: 30617828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Computational Modeling of Proteins Using Sparse Paramagnetic NMR Data.
    Pilla KB; Otting G; Huber T
    Methods Mol Biol; 2017; 1526():3-21. PubMed ID: 27896733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR structure determination of the conserved hypothetical protein TM1816 from Thermotoga maritima.
    Columbus L; Peti W; Etezady-Esfarjani T; Herrmann T; Wüthrich K
    Proteins; 2005 Aug; 60(3):552-7. PubMed ID: 15937903
    [No Abstract]   [Full Text] [Related]  

  • 6. Homology modeling of larger proteins guided by chemical shifts.
    Shen Y; Bax A
    Nat Methods; 2015 Aug; 12(8):747-50. PubMed ID: 26053889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein structure prediction assisted with sparse NMR data in CASP13.
    Sala D; Huang YJ; Cole CA; Snyder DA; Liu G; Ishida Y; Swapna GVT; Brock KP; Sander C; Fidelis K; Kryshtafovych A; Inouye M; Tejero R; Valafar H; Rosato A; Montelione GT
    Proteins; 2019 Dec; 87(12):1315-1332. PubMed ID: 31603581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein 3D structure computed from evolutionary sequence variation.
    Marks DS; Colwell LJ; Sheridan R; Hopf TA; Pagnani A; Zecchina R; Sander C
    PLoS One; 2011; 6(12):e28766. PubMed ID: 22163331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. United we stand: combining structural methods.
    Cowieson NP; Kobe B; Martin JL
    Curr Opin Struct Biol; 2008 Oct; 18(5):617-22. PubMed ID: 18755272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CABS-NMR--De novo tool for rapid global fold determination from chemical shifts, residual dipolar couplings and sparse methyl-methyl NOEs.
    Latek D; Kolinski A
    J Comput Chem; 2011 Feb; 32(3):536-44. PubMed ID: 20806263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR-assisted protein structure prediction with MELDxMD.
    Robertson JC; Nassar R; Liu C; Brini E; Dill KA; Perez A
    Proteins; 2019 Dec; 87(12):1333-1340. PubMed ID: 31350773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A data-driven, systematic search algorithm for structure determination of denatured or disordered proteins.
    Wang L; Donald BR
    Comput Syst Bioinformatics Conf; 2006; ():67-78. PubMed ID: 17369626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A general method for the unbiased improvement of solution NMR structures by the use of related X-ray data, the AUREMOL-ISIC algorithm.
    Brunner K; Gronwald W; Trenner JM; Neidig KP; Kalbitzer HR
    BMC Struct Biol; 2006 Jun; 6():14. PubMed ID: 16800891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combination of NMR spectroscopy and X-ray crystallography offers unique advantages for elucidation of the structural basis of protein complex assembly.
    Feng W; Pan L; Zhang M
    Sci China Life Sci; 2011 Feb; 54(2):101-11. PubMed ID: 21318479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Hausdorff-based NOE assignment algorithm using protein backbone determined from residual dipolar couplings and rotamer patterns.
    Zeng J; Tripathy C; Zhou P; Donald BR
    Comput Syst Bioinformatics Conf; 2008; 7():169-81. PubMed ID: 19642278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing atomistic simulation data with the NMR experiment: how much can NOEs actually tell us?
    Zagrovic B; van Gunsteren WF
    Proteins; 2006 Apr; 63(1):210-8. PubMed ID: 16425239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residual dipolar couplings in NMR structure analysis.
    Lipsitz RS; Tjandra N
    Annu Rev Biophys Biomol Struct; 2004; 33():387-413. PubMed ID: 15139819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A restraint molecular dynamics and simulated annealing approach for protein homology modeling utilizing mean angles.
    Möglich A; Weinfurtner D; Maurer T; Gronwald W; Kalbitzer HR
    BMC Bioinformatics; 2005 Apr; 6():91. PubMed ID: 15819976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Various strategies of using residual dipolar couplings in NMR-driven protein docking: application to Lys48-linked di-ubiquitin and validation against 15N-relaxation data.
    van Dijk AD; Fushman D; Bonvin AM
    Proteins; 2005 Aug; 60(3):367-81. PubMed ID: 15937902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sparse networks of directly coupled, polymorphic, and functional side chains in allosteric proteins.
    Soltan Ghoraie L; Burkowski F; Zhu M
    Proteins; 2015 Mar; 83(3):497-516. PubMed ID: 25545075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.