These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 26121976)
21. A gene expression database for the molecular pharmacology of cancer. Scherf U; Ross DT; Waltham M; Smith LH; Lee JK; Tanabe L; Kohn KW; Reinhold WC; Myers TG; Andrews DT; Scudiero DA; Eisen MB; Sausville EA; Pommier Y; Botstein D; Brown PO; Weinstein JN Nat Genet; 2000 Mar; 24(3):236-44. PubMed ID: 10700175 [TBL] [Abstract][Full Text] [Related]
22. Prediction of Chemosensitivity in Multiple Primary Cancer Patients Using Machine Learning. Zhang X; Jang MI; Zheng Z; Gao A; Lin Z; Kim KY Anticancer Res; 2021 May; 41(5):2419-2429. PubMed ID: 33952467 [TBL] [Abstract][Full Text] [Related]
23. Modeling gene-wise dependencies improves the identification of drug response biomarkers in cancer studies. Nikolova O; Moser R; Kemp C; Gönen M; Margolin AA Bioinformatics; 2017 May; 33(9):1362-1369. PubMed ID: 28082455 [TBL] [Abstract][Full Text] [Related]
24. A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue. Chen Z; Li J; Wei L Artif Intell Med; 2007 Oct; 41(2):161-75. PubMed ID: 17851055 [TBL] [Abstract][Full Text] [Related]
25. Improving the prediction of chemotherapeutic sensitivity of tumors in breast cancer via optimizing the selection of candidate genes. Jiang L; Huang L; Kuang Q; Zhang J; Li M; Wen Z; He L Comput Biol Chem; 2014 Apr; 49():71-8. PubMed ID: 24440656 [TBL] [Abstract][Full Text] [Related]
26. [Genomic markers and anticancer chemotherapy]. Nishiyama M Gan To Kagaku Ryoho; 2008 Feb; 35(2):194-9. PubMed ID: 18281756 [TBL] [Abstract][Full Text] [Related]
27. Iterative sure independent ranking and screening for drug response prediction. An B; Zhang Q; Fang Y; Chen M; Qin Y BMC Med Inform Decis Mak; 2020 Sep; 20(Suppl 8):224. PubMed ID: 32962705 [TBL] [Abstract][Full Text] [Related]
28. Computational Cancer Cell Models to Guide Precision Breast Cancer Medicine. Cheng L; Majumdar A; Stover D; Wu S; Lu Y; Li L Genes (Basel); 2020 Feb; 11(3):. PubMed ID: 32121160 [TBL] [Abstract][Full Text] [Related]
29. Gene signatures developed from patient tumor explants grown in nude mice to predict tumor response to 11 cytotoxic drugs. Fiebig HH; Schüler J; Bausch N; Hofmann M; Metz T; Korrat A Cancer Genomics Proteomics; 2007; 4(3):197-209. PubMed ID: 17878523 [TBL] [Abstract][Full Text] [Related]
30. A method of gene expression data transfer from cell lines to cancer patients for machine-learning prediction of drug efficiency. Borisov N; Tkachev V; Suntsova M; Kovalchuk O; Zhavoronkov A; Muchnik I; Buzdin A Cell Cycle; 2018; 17(4):486-491. PubMed ID: 29251172 [TBL] [Abstract][Full Text] [Related]
31. Mixture classification model based on clinical markers for breast cancer prognosis. Zeng T; Liu J Artif Intell Med; 2010; 48(2-3):129-37. PubMed ID: 20005686 [TBL] [Abstract][Full Text] [Related]
32. In silico drug combination discovery for personalized cancer therapy. Jeon M; Kim S; Park S; Lee H; Kang J BMC Syst Biol; 2018 Mar; 12(Suppl 2):16. PubMed ID: 29560824 [TBL] [Abstract][Full Text] [Related]
33. RefDNN: a reference drug based neural network for more accurate prediction of anticancer drug resistance. Choi J; Park S; Ahn J Sci Rep; 2020 Feb; 10(1):1861. PubMed ID: 32024872 [TBL] [Abstract][Full Text] [Related]
34. Identification of the functional alteration signatures across different cancer types with support vector machine and feature analysis. Wang S; Cai Y Biochim Biophys Acta Mol Basis Dis; 2018 Jun; 1864(6 Pt B):2218-2227. PubMed ID: 29277326 [TBL] [Abstract][Full Text] [Related]
35. [Polygenetic pharmacogenomic strategies to identify drug sensitivity biomarkers]. Nishiyama M Gan To Kagaku Ryoho; 2005 Nov; 32(12):1902-7. PubMed ID: 16282724 [TBL] [Abstract][Full Text] [Related]
36. DROEG: a method for cancer drug response prediction based on omics and essential genes integration. Wu P; Sun R; Fahira A; Chen Y; Jiangzhou H; Wang K; Yang Q; Dai Y; Pan D; Shi Y; Wang Z Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36715269 [TBL] [Abstract][Full Text] [Related]
37. Integrated analysis of transcriptome in cancer patient-derived xenografts. Li H; Zhu Y; Tang X; Li J; Li Y; Zhong Z; Ding G; Li Y PLoS One; 2015; 10(5):e0124780. PubMed ID: 25951608 [TBL] [Abstract][Full Text] [Related]
38. A machine learning-based gene signature of response to the novel alkylating agent LP-184 distinguishes its potential tumor indications. Kathad U; Kulkarni A; McDermott JR; Wegner J; Carr P; Biyani N; Modali R; Richard JP; Sharma P; Bhatia K BMC Bioinformatics; 2021 Mar; 22(1):102. PubMed ID: 33653269 [TBL] [Abstract][Full Text] [Related]
39. Super.FELT: supervised feature extraction learning using triplet loss for drug response prediction with multi-omics data. Park S; Soh J; Lee H BMC Bioinformatics; 2021 May; 22(1):269. PubMed ID: 34034645 [TBL] [Abstract][Full Text] [Related]
40. Gene expression profiling of breast tumor cell lines to predict for therapeutic response to microtubule-stabilizing agents. Kadra G; Finetti P; Toiron Y; Viens P; Birnbaum D; Borg JP; Bertucci F; Gonçalves A Breast Cancer Res Treat; 2012 Apr; 132(3):1035-47. PubMed ID: 21792624 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]