These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
512 related articles for article (PubMed ID: 26122303)
1. Intermittent dosing of rapamycin maintains antiepileptogenic effects in a mouse model of tuberous sclerosis complex. Rensing N; Han L; Wong M Epilepsia; 2015 Jul; 56(7):1088-97. PubMed ID: 26122303 [TBL] [Abstract][Full Text] [Related]
2. Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Zeng LH; Xu L; Gutmann DH; Wong M Ann Neurol; 2008 Apr; 63(4):444-53. PubMed ID: 18389497 [TBL] [Abstract][Full Text] [Related]
3. The specificity and role of microglia in epileptogenesis in mouse models of tuberous sclerosis complex. Zhang B; Zou J; Han L; Beeler B; Friedman JL; Griffin E; Piao YS; Rensing NR; Wong M Epilepsia; 2018 Sep; 59(9):1796-1806. PubMed ID: 30079598 [TBL] [Abstract][Full Text] [Related]
4. The role of mTOR inhibitors in preventing epileptogenesis in patients with TSC: Current evidence and future perspectives. Schubert-Bast S; Rosenow F; Klein KM; Reif PS; Kieslich M; Strzelczyk A Epilepsy Behav; 2019 Feb; 91():94-98. PubMed ID: 29941212 [TBL] [Abstract][Full Text] [Related]
5. Mechanistic target of rapamycin (mTOR) in tuberous sclerosis complex-associated epilepsy. Curatolo P Pediatr Neurol; 2015 Mar; 52(3):281-9. PubMed ID: 25591831 [TBL] [Abstract][Full Text] [Related]
6. Inflammatory mechanisms contribute to the neurological manifestations of tuberous sclerosis complex. Zhang B; Zou J; Rensing NR; Yang M; Wong M Neurobiol Dis; 2015 Aug; 80():70-9. PubMed ID: 26003087 [TBL] [Abstract][Full Text] [Related]
7. Mammalian target of rapamycin (mTOR) inhibition as a potential antiepileptogenic therapy: From tuberous sclerosis to common acquired epilepsies. Wong M Epilepsia; 2010 Jan; 51(1):27-36. PubMed ID: 19817806 [TBL] [Abstract][Full Text] [Related]
8. The natural history and treatment of epilepsy in a murine model of tuberous sclerosis. Erbayat-Altay E; Zeng LH; Xu L; Gutmann DH; Wong M Epilepsia; 2007 Aug; 48(8):1470-6. PubMed ID: 17484760 [TBL] [Abstract][Full Text] [Related]
9. Tsc2 gene inactivation causes a more severe epilepsy phenotype than Tsc1 inactivation in a mouse model of tuberous sclerosis complex. Zeng LH; Rensing NR; Zhang B; Gutmann DH; Gambello MJ; Wong M Hum Mol Genet; 2011 Feb; 20(3):445-54. PubMed ID: 21062901 [TBL] [Abstract][Full Text] [Related]
10. Hypothalamic orexin and mechanistic target of rapamycin activation mediate sleep dysfunction in a mouse model of tuberous sclerosis complex. Zhang B; Guo D; Han L; Rensing N; Satoh A; Wong M Neurobiol Dis; 2020 Feb; 134():104615. PubMed ID: 31605778 [TBL] [Abstract][Full Text] [Related]
11. Effects of antiepileptic drugs in a new TSC/mTOR-dependent epilepsy mouse model. Koene LMC; van Grondelle SE; Proietti Onori M; Wallaard I; Kooijman NHRM; van Oort A; Schreiber J; Elgersma Y Ann Clin Transl Neurol; 2019 Jul; 6(7):1273-1291. PubMed ID: 31353861 [TBL] [Abstract][Full Text] [Related]
12. Differentiating the mTOR inhibitors everolimus and sirolimus in the treatment of tuberous sclerosis complex. MacKeigan JP; Krueger DA Neuro Oncol; 2015 Dec; 17(12):1550-9. PubMed ID: 26289591 [TBL] [Abstract][Full Text] [Related]
13. Cerebral vascular and blood brain-barrier abnormalities in a mouse model of epilepsy and tuberous sclerosis complex. Guo D; Zhang B; Han L; Rensing NR; Wong M Epilepsia; 2024 Feb; 65(2):483-496. PubMed ID: 38049961 [TBL] [Abstract][Full Text] [Related]
14. A circuitry and biochemical basis for tuberous sclerosis symptoms: from epilepsy to neurocognitive deficits. Feliciano DM; Lin TV; Hartman NW; Bartley CM; Kubera C; Hsieh L; Lafourcade C; O'Keefe RA; Bordey A Int J Dev Neurosci; 2013 Nov; 31(7):667-78. PubMed ID: 23485365 [TBL] [Abstract][Full Text] [Related]
15. Epileptogenesis and reduced inward rectifier potassium current in tuberous sclerosis complex-1-deficient astrocytes. Jansen LA; Uhlmann EJ; Crino PB; Gutmann DH; Wong M Epilepsia; 2005 Dec; 46(12):1871-80. PubMed ID: 16393152 [TBL] [Abstract][Full Text] [Related]
16. Postnatal reduction of tuberous sclerosis complex 1 expression in astrocytes and neurons causes seizures in an age-dependent manner. Zou J; Zhang B; Gutmann DH; Wong M Epilepsia; 2017 Dec; 58(12):2053-2063. PubMed ID: 29023667 [TBL] [Abstract][Full Text] [Related]
17. Novel brain permeant mTORC1/2 inhibitors are as efficacious as rapamycin or everolimus in mouse models of acquired partial epilepsy and tuberous sclerosis complex. Theilmann W; Gericke B; Schidlitzki A; Muneeb Anjum SM; Borsdorf S; Harries T; Roberds SL; Aguiar DJ; Brunner D; Leiser SC; Song D; Fabbro D; Hillmann P; Wymann MP; Löscher W Neuropharmacology; 2020 Dec; 180():108297. PubMed ID: 32890589 [TBL] [Abstract][Full Text] [Related]
18. Efficacy of combined inhibition of mTOR and ERK/MAPK pathways in treating a tuberous sclerosis complex cell model. Mi R; Ma J; Zhang D; Li L; Zhang H J Genet Genomics; 2009 Jun; 36(6):355-61. PubMed ID: 19539245 [TBL] [Abstract][Full Text] [Related]
19. Vigabatrin inhibits seizures and mTOR pathway activation in a mouse model of tuberous sclerosis complex. Zhang B; McDaniel SS; Rensing NR; Wong M PLoS One; 2013; 8(2):e57445. PubMed ID: 23437388 [TBL] [Abstract][Full Text] [Related]
20. Efficacy of a rapamycin analog (CCI-779) and IFN-gamma in tuberous sclerosis mouse models. Lee L; Sudentas P; Donohue B; Asrican K; Worku A; Walker V; Sun Y; Schmidt K; Albert MS; El-Hashemite N; Lader AS; Onda H; Zhang H; Kwiatkowski DJ; Dabora SL Genes Chromosomes Cancer; 2005 Mar; 42(3):213-27. PubMed ID: 15578690 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]