BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 26122523)

  • 1. Gas-Phase Amidation of Carboxylic Acids with Woodward's Reagent K Ions.
    Peng Z; Pilo AL; Luongo CA; McLuckey SA
    J Am Soc Mass Spectrom; 2015 Oct; 26(10):1686-94. PubMed ID: 26122523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectrophotometric tool for the determination of the total carboxylate content in proteins; molar extinction coefficient of the enol ester from Woodward's reagent K reacted with protein carboxylates.
    Kosters HA; de Jongh HH
    Anal Chem; 2003 May; 75(10):2512-6. PubMed ID: 12918999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitory effects of Woodward's reagent K on carrier-mediated anion transport in rabbit intestinal brush border membrane vesicles.
    Tam TN; Schron CM
    Zhonghua Yi Xue Za Zhi (Taipei); 1999 Feb; 62(2):98-106. PubMed ID: 10063720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of acylphosphatase inactivation by Woodward's reagent K.
    Paoli P; Fiaschi T; Cirri P; Camici G; Manao G; Cappugi G; Raugei G; Moneti G; Ramponi G
    Biochem J; 1997 Dec; 328 ( Pt 3)(Pt 3):855-61. PubMed ID: 9396731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional reconstitution of cytochrome P-450scc with hemin activated with Woodward's reagent K. Formation of a hemeprotein cross-link.
    Pikuleva IA; Lapko AG; Chashchin VL
    J Biol Chem; 1992 Jan; 267(3):1438-42. PubMed ID: 1730693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Woodward's reagent K inactivation of Escherichia coli L-threonine dehydrogenase: increased absorbance at 340-350 nm is due to modification of cysteine and histidine residues, not aspartate or glutamate carboxyl groups.
    Johnson AR; Dekker EE
    Protein Sci; 1996 Feb; 5(2):382-90. PubMed ID: 8745417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gas-phase reactivity of carboxylic acid functional groups with carbodiimides.
    Prentice BM; Gilbert JD; Stutzman JR; Forrest WP; McLuckey SA
    J Am Soc Mass Spectrom; 2013 Jan; 24(1):30-7. PubMed ID: 23208744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yeast enolase carboxyl modification using Woodward's reagent K.
    Sinha U; Brewer JM
    Biochem Cell Biol; 1986 Oct; 64(10):970-5. PubMed ID: 3541975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C-terminal peptide extension via gas-phase ion/ion reactions.
    Peng Z; McLuckey SA
    Int J Mass Spectrom; 2015 Nov; 391():17-23. PubMed ID: 26640400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gas phase reactivity of carboxylates with N-hydroxysuccinimide esters.
    Peng Z; McGee WM; Bu J; Barefoot NZ; McLuckey SA
    J Am Soc Mass Spectrom; 2015 Jan; 26(1):174-80. PubMed ID: 25338221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Covalent modification of gaseous peptide ions with N-hydroxysuccinimide ester reagent ions.
    Mentinova M; McLuckey SA
    J Am Chem Soc; 2010 Dec; 132(51):18248-57. PubMed ID: 21128662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Woodward's reagent K reacts with histidine and cysteine residues in Escherichia coli and Saccharomyces cerevisiae phosphoenolpyruvate carboxykinases.
    Bustos P; Gajardo MI; Gómez C; Goldie H; Cardemil E; Jabalquinto AM
    J Protein Chem; 1996 Jul; 15(5):467-72. PubMed ID: 8895092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalent labeling of the nonsubstrate ligand-binding site of glutathione S-transferases with bilirubin-Woodward's reagent K.
    Boyer TD
    J Biol Chem; 1986 Apr; 261(12):5363-7. PubMed ID: 3957929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel method for chemical modification of functional groups other than a carboxyl group in proteins by N-ethyl-5-phenylisooxazolium-3'-sulfonate (Woodward's reagent-K): inhibition of ADP-induced platelet responses involves covalent modification of aggregin, an ADP receptor.
    Puri RN; Colman RW
    Anal Biochem; 1996 Sep; 240(2):251-61. PubMed ID: 8811919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective Gas-Phase Oxidation and Localization of Alkylated Cysteine Residues in Polypeptide Ions via Ion/Ion Chemistry.
    Pilo AL; Zhao F; McLuckey SA
    J Proteome Res; 2016 Sep; 15(9):3139-46. PubMed ID: 27476698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of the mitochondrial phosphate carrier by a reaction with a carboxyl group reagent.
    Wolf G; Genchi G; Palmieri F
    Biochem Biophys Res Commun; 1989 Jul; 162(1):212-6. PubMed ID: 2751650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radical-driven peptide backbone dissociation tandem mass spectrometry.
    Oh HB; Moon B
    Mass Spectrom Rev; 2015; 34(2):116-32. PubMed ID: 24863492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity-Based Proteome Profiling Probes Based on Woodward's Reagent K with Distinct Target Selectivity.
    Qian Y; Schürmann M; Janning P; Hedberg C; Waldmann H
    Angew Chem Int Ed Engl; 2016 Jun; 55(27):7766-71. PubMed ID: 27159346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification of maize phosphoenolpyruvate carboxylase by Woodward's reagent K.
    Maralihalli GB; Bhagwat AS
    J Protein Chem; 1993 Aug; 12(4):451-7. PubMed ID: 8251065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gas phase reaction of substituted isoquinolines to carboxylic acids in ion trap and triple quadrupole mass spectrometers after electrospray ionization and collision-induced dissociation.
    Thevis M; Kohler M; Schlörer N; Schänzer W
    J Am Soc Mass Spectrom; 2008 Jan; 19(1):151-8. PubMed ID: 18063383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.