These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 26122837)

  • 1. Can an increase in neuropeptide production in the soma lead to DCV circulation in axon terminals with type III en passant boutons?
    Kuznetsov IA; Kuznetsov AV
    Math Biosci; 2015 Sep; 267():61-78. PubMed ID: 26122837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulating Reversibility of Dense Core Vesicles Capture in En Passant Boutons: Using Mathematical Modeling to Understand the Fate of Dense Core Vesicles in En Passant Boutons.
    Kuznetsov IA; Kuznetsov AV
    J Biomech Eng; 2018 May; 140(5):. PubMed ID: 29049515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling neuropeptide transport in various types of nerve terminals containing en passant boutons.
    Kuznetsov IA; Kuznetsov AV
    Math Biosci; 2015 Mar; 261():27-36. PubMed ID: 25514215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A compartmental model of neuropeptide circulation and capture between the axon soma and nerve terminals.
    Kuznetsov IA; Kuznetsov AV
    Int J Numer Method Biomed Eng; 2013 May; 29(5):574-85. PubMed ID: 23418183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How old are dense-core vesicles residing in
    Kuznetsov IA; Kuznetsov AV
    Proc Math Phys Eng Sci; 2020 Sep; 476(2241):20200454. PubMed ID: 33071588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling transport and mean age of dense core vesicles in large axonal arbours.
    Kuznetsov IA; Kuznetsov AV
    Proc Math Phys Eng Sci; 2019 Aug; 475(2228):20190284. PubMed ID: 31534430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of a sudden drop-off in distal dense core vesicle concentration in Drosophila type II motoneuron terminals.
    Kuznetsov IA; Kuznetsov AV
    Int J Numer Method Biomed Eng; 2021 Dec; 37(12):e3523. PubMed ID: 34418891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic neuropeptide release by dynamin-dependent partial release from circulating vesicles.
    Wong MY; Cavolo SL; Levitan ES
    Mol Biol Cell; 2015 Jul; 26(13):2466-74. PubMed ID: 25904335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity Induces Fmr1-Sensitive Synaptic Capture of Anterograde Circulating Neuropeptide Vesicles.
    Cavolo SL; Bulgari D; Deitcher DL; Levitan ES
    J Neurosci; 2016 Nov; 36(46):11781-11787. PubMed ID: 27852784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuropeptide delivery to synapses by long-range vesicle circulation and sporadic capture.
    Wong MY; Zhou C; Shakiryanova D; Lloyd TE; Deitcher DL; Levitan ES
    Cell; 2012 Mar; 148(5):1029-38. PubMed ID: 22385966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of Huntingtin stimulates capture of retrograde dense-core vesicles to increase synaptic neuropeptide stores.
    Bulgari D; Deitcher DL; Levitan ES
    Eur J Cell Biol; 2017 Aug; 96(5):402-406. PubMed ID: 28129919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vesicle capture, not delivery, scales up neuropeptide storage in neuroendocrine terminals.
    Bulgari D; Zhou C; Hewes RS; Deitcher DL; Levitan ES
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3597-601. PubMed ID: 24550480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limited distal organelles and synaptic function in extensive monoaminergic innervation.
    Tao J; Bulgari D; Deitcher DL; Levitan ES
    J Cell Sci; 2017 Aug; 130(15):2520-2529. PubMed ID: 28600320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secretory vesicle trafficking in awake and anaesthetized mice: differential speeds in axons versus synapses.
    Knabbe J; Nassal JP; Verhage M; Kuner T
    J Physiol; 2018 Aug; 596(16):3759-3773. PubMed ID: 29873393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two kinesins drive anterograde neuropeptide transport.
    Lim A; Rechtsteiner A; Saxton WM
    Mol Biol Cell; 2017 Nov; 28(24):3542-3553. PubMed ID: 28904207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capture of Dense Core Vesicles at Synapses by JNK-Dependent Phosphorylation of Synaptotagmin-4.
    Bharat V; Siebrecht M; Burk K; Ahmed S; Reissner C; Kohansal-Nodehi M; Steubler V; Zweckstetter M; Ting JT; Dean C
    Cell Rep; 2017 Nov; 21(8):2118-2133. PubMed ID: 29166604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CAPS-1 promotes fusion competence of stationary dense-core vesicles in presynaptic terminals of mammalian neurons.
    Farina M; van de Bospoort R; He E; Persoon CM; van Weering JR; Broeke JH; Verhage M; Toonen RF
    Elife; 2015 Feb; 4():. PubMed ID: 25719439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. KIF1A is the primary anterograde motor protein required for the axonal transport of dense-core vesicles in cultured hippocampal neurons.
    Lo KY; Kuzmin A; Unger SM; Petersen JD; Silverman MA
    Neurosci Lett; 2011 Mar; 491(3):168-73. PubMed ID: 21256924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synapsin Is Required for Dense Core Vesicle Capture and cAMP-Dependent Neuropeptide Release.
    Yu SC; Liewald JF; Shao J; Steuer Costa W; Gottschalk A
    J Neurosci; 2021 May; 41(19):4187-4201. PubMed ID: 33820857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myopic (HD-PTP, PTPN23) selectively regulates synaptic neuropeptide release.
    Bulgari D; Jha A; Deitcher DL; Levitan ES
    Proc Natl Acad Sci U S A; 2018 Feb; 115(7):1617-1622. PubMed ID: 29378961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.