BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 26122857)

  • 1. Microfluidic device for sheathless particle focusing and separation using a viscoelastic fluid.
    Nam J; Namgung B; Lim CT; Bae JE; Leo HL; Cho KS; Kim S
    J Chromatogr A; 2015 Aug; 1406():244-50. PubMed ID: 26122857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Dean-flow-coupled interfacial viscoelastic fluid for microparticle separation applied in a cell smear method.
    Shi X; Liu L; Cao W; Zhu G; Tan W
    Analyst; 2019 Oct; 144(20):5934-5946. PubMed ID: 31483419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid capillary-inserted microfluidic device for sheathless particle focusing and separation in viscoelastic flow.
    Nam J; Tan JK; Khoo BL; Namgung B; Leo HL; Lim CT; Kim S
    Biomicrofluidics; 2015 Nov; 9(6):064117. PubMed ID: 26734115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic co-flow of Newtonian and viscoelastic fluids for high-resolution separation of microparticles.
    Tian F; Zhang W; Cai L; Li S; Hu G; Cong Y; Liu C; Li T; Sun J
    Lab Chip; 2017 Sep; 17(18):3078-3085. PubMed ID: 28805872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of viscoelastic focusing of particles and cells in a zigzag microchannel.
    Yuan D; Yadav S; Ta HT; Fallahi H; An H; Kashaninejad N; Ooi CH; Nguyen NT; Zhang J
    Electrophoresis; 2021 Nov; 42(21-22):2230-2237. PubMed ID: 34396540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel.
    Yang S; Kim JY; Lee SJ; Lee SS; Kim JM
    Lab Chip; 2011 Jan; 11(2):266-73. PubMed ID: 20976348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous erythrocyte removal and leukocyte separation from whole blood based on viscoelastic cell focusing and the margination phenomenon.
    Nam J; Yoon J; Kim J; Jang WS; Lim CS
    J Chromatogr A; 2019 Jun; 1595():230-239. PubMed ID: 30772054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput malaria parasite separation using a viscoelastic fluid for ultrasensitive PCR detection.
    Nam J; Shin Y; Tan JK; Lim YB; Lim CT; Kim S
    Lab Chip; 2016 May; 16(11):2086-92. PubMed ID: 27160315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size-Based Separation of Particles and Cells Utilizing Viscoelastic Effects in Straight Microchannels.
    Liu C; Xue C; Chen X; Shan L; Tian Y; Hu G
    Anal Chem; 2015 Jun; 87(12):6041-8. PubMed ID: 25989347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous separation of microparticles in a microfluidic channel via the elasto-inertial effect of non-Newtonian fluid.
    Nam J; Lim H; Kim D; Jung H; Shin S
    Lab Chip; 2012 Apr; 12(7):1347-54. PubMed ID: 22334376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. "From the Edge to the Center": Viscoelastic Migration of Particles and Cells in a Strongly Shear-Thinning Liquid Flowing in a Microchannel.
    Del Giudice F; Sathish S; D'Avino G; Shen AQ
    Anal Chem; 2017 Dec; 89(24):13146-13159. PubMed ID: 29083161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cascaded contraction-expansion channels for bacteria separation from RBCs using viscoelastic microfluidics.
    Bilican I
    J Chromatogr A; 2021 Aug; 1652():462366. PubMed ID: 34242936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viscoelastic Separation and Concentration of Fungi from Blood for Highly Sensitive Molecular Diagnostics.
    Nam J; Jang WS; Hong DH; Lim CS
    Sci Rep; 2019 Feb; 9(1):3067. PubMed ID: 30816161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sheathless separation of microalgae from bacteria using a simple straight channel based on viscoelastic microfluidics.
    Yuan D; Zhao Q; Yan S; Tang SY; Zhang Y; Yun G; Nguyen NT; Zhang J; Li M; Li W
    Lab Chip; 2019 Sep; 19(17):2811-2821. PubMed ID: 31312819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetophoresis 'meets' viscoelasticity: deterministic separation of magnetic particles in a modular microfluidic device.
    Del Giudice F; Madadi H; Villone MM; D'Avino G; Cusano AM; Vecchione R; Ventre M; Maffettone PL; Netti PA
    Lab Chip; 2015 Apr; 15(8):1912-22. PubMed ID: 25732596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spiral microchannel with ordered micro-obstacles for continuous and highly-efficient particle separation.
    Shen S; Tian C; Li T; Xu J; Chen SW; Tu Q; Yuan MS; Liu W; Wang J
    Lab Chip; 2017 Oct; 17(21):3578-3591. PubMed ID: 28975177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sheathless size-based acoustic particle separation.
    Guldiken R; Jo MC; Gallant ND; Demirci U; Zhe J
    Sensors (Basel); 2012; 12(1):905-22. PubMed ID: 22368502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secondary-flow-aided single-train elastic-inertial focusing in low elasticity viscoelastic fluids.
    Xiang N; Wang S; Ni Z
    Electrophoresis; 2021 Nov; 42(21-22):2256-2263. PubMed ID: 34184303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oscillatory Viscoelastic Microfluidics for Efficient Focusing and Separation of Nanoscale Species.
    Asghari M; Cao X; Mateescu B; van Leeuwen D; Aslan MK; Stavrakis S; deMello AJ
    ACS Nano; 2020 Jan; 14(1):422-433. PubMed ID: 31794192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simplified sheathless cell separation approach using combined gravitational-sedimentation-based prefocusing and dielectrophoretic separation.
    Luo T; Fan L; Zeng Y; Liu Y; Chen S; Tan Q; Lam RHW; Sun D
    Lab Chip; 2018 May; 18(11):1521-1532. PubMed ID: 29725680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.