These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 26122917)

  • 41. Flexible Patterned Electrohydrodynamic Jet Printing Using Orthogonal Deflection Electrodes.
    Li X; Liang J; Xiao J; Zhu L; Wang H; Sun L; Zhang F; Zhang Y; Yin P; Chen L; Wang D
    ACS Appl Mater Interfaces; 2023 Oct; 15(39):46300-46310. PubMed ID: 37733925
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Direct Patterning and Spontaneous Self-Assembly of Graphene Oxide via Electrohydrodynamic Jet Printing for Energy Storage and Sensing.
    Zhang B; Lee J; Kim M; Lee N; Lee H; Byun D
    Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31861716
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Study of Impingement Types and Printing Quality during Laser Printing of Viscoelastic Alginate Solutions.
    Zhang Z; Xiong R; Corr DT; Huang Y
    Langmuir; 2016 Mar; 32(12):3004-14. PubMed ID: 26934283
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Instrument for fine control of drop-on-demand electrohydrodynamic jet printing by current measurement.
    Li K; Wang D; Yi S; Jia H; Qian J; Du Z; Ren T; Liang J; Martinez-Chapa SO; Madou M
    Rev Sci Instrum; 2019 Nov; 90(11):115001. PubMed ID: 31779448
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optimization of experimental parameters to determine the jetting regimes in electrohydrodynamic printing.
    Lee A; Jin H; Dang HW; Choi KH; Ahn KH
    Langmuir; 2013 Nov; 29(44):13630-9. PubMed ID: 24102618
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of Cryogenic Electrohydrodynamic Jet Printing for Fabrication of Fine Scaffolds with Extra Filament Surface Topography.
    Li Y; Zhou J; Wu C; Yu Z; Zhang W; Li W; Zhang X
    3D Print Addit Manuf; 2020 Oct; 7(5):230-236. PubMed ID: 36654919
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Piezoelectric ink jet processing of materials for medical and biological applications.
    Sumerel J; Lewis J; Doraiswamy A; Deravi LF; Sewell SL; Gerdon AE; Wright DW; Narayan RJ
    Biotechnol J; 2006 Sep; 1(9):976-87. PubMed ID: 16941446
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Additive manufacturing techniques for the production of tissue engineering constructs.
    Mota C; Puppi D; Chiellini F; Chiellini E
    J Tissue Eng Regen Med; 2015 Mar; 9(3):174-90. PubMed ID: 23172792
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Numerical modeling and analysis of coaxial electrohydrodynamic jet printing.
    Wang D; Abbas Z; Lu L; Zhao X; Xu P; Zhao K; Yin P; Liang J
    Sci Rep; 2022 Feb; 12(1):1924. PubMed ID: 35121778
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Printable thermo-optic polymer switches utilizing imprinting and ink-jet printing.
    Lin X; Ling T; Subbaraman H; Guo LJ; Chen RT
    Opt Express; 2013 Jan; 21(2):2110-7. PubMed ID: 23389191
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nib-Assisted Coaxial Electrohydrodynamic Jet Printing for Nanowires Deposition.
    Shi S; Abbas Z; Zhao X; Liang J; Wang D
    Nanomaterials (Basel); 2023 Apr; 13(9):. PubMed ID: 37177002
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Substrate stiffness influences high resolution printing of living cells with an ink-jet system.
    Tirella A; Vozzi F; De Maria C; Vozzi G; Sandri T; Sassano D; Cognolato L; Ahluwalia A
    J Biosci Bioeng; 2011 Jul; 112(1):79-85. PubMed ID: 21497548
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Innovations in 3D printing: a 3D overview from optics to organs.
    Schubert C; van Langeveld MC; Donoso LA
    Br J Ophthalmol; 2014 Feb; 98(2):159-61. PubMed ID: 24288392
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Beginner's Guide to Micro- and Nanoscale Electrochemical Additive Manufacturing.
    Hengsteler J; Kanes KA; Khasanova L; Momotenko D
    Annu Rev Anal Chem (Palo Alto Calif); 2023 Jun; 16(1):71-91. PubMed ID: 37068744
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Prediction of Both E-Jet Printing Ejection Cycle Time and Droplet Diameter Based on Random Forest Regression.
    Chen Y; Lao Z; Wang R; Li J; Gai J; You H
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985030
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Printing Crack-Free Microporous Structures by Combining Additive Manufacturing with Colloidal Assembly.
    Winhard BF; Maragno LG; Gomez-Gomez A; Katz J; Furlan KP
    Small Methods; 2023 Feb; 7(2):e2201183. PubMed ID: 36571286
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Experimental Study of the Influence of Ink Properties and Process Parameters on Ejection Volume in Electrohydrodynamic Jet Printing.
    Guo L; Duan Y; Huang Y; Yin Z
    Micromachines (Basel); 2018 Oct; 9(10):. PubMed ID: 30424455
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrohydrodynamic Direct-Writing Micropatterns with Assisted Airflow.
    Jiang J; Wang X; Li W; Liu J; Liu Y; Zheng G
    Micromachines (Basel); 2018 Sep; 9(9):. PubMed ID: 30424389
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Inkjet printing for high-throughput cell patterning.
    Roth EA; Xu T; Das M; Gregory C; Hickman JJ; Boland T
    Biomaterials; 2004 Aug; 25(17):3707-15. PubMed ID: 15020146
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Printable photonic crystals with high refractive index for applications in visible light.
    Calafiore G; Fillot Q; Dhuey S; Sassolini S; Salvadori F; Mejia CA; Munechika K; Peroz C; Cabrini S; PiƱa-Hernandez C
    Nanotechnology; 2016 Mar; 27(11):115303. PubMed ID: 26875825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.