BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 26122936)

  • 1. Numerical simulation of the tumor interstitial fluid transport: Consideration of drug delivery mechanism.
    Moghadam MC; Deyranlou A; Sharifi A; Niazmand H
    Microvasc Res; 2015 Sep; 101():62-71. PubMed ID: 26122936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of microvascular distribution and its density on interstitial fluid pressure in solid tumors: A computational model.
    Mohammadi M; Chen P
    Microvasc Res; 2015 Sep; 101():26-32. PubMed ID: 26093178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of neuroblastoma xenograft in rat flank. I. Growth, interstitial fluid pressure, and interstitial fluid velocity distribution profiles.
    DiResta GR; Lee J; Larson SM; Arbit E
    Microvasc Res; 1993 Sep; 46(2):158-77. PubMed ID: 8246816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of interstitial pressure on tumor growth: coupling with the blood and lymphatic vascular systems.
    Wu M; Frieboes HB; McDougall SR; Chaplain MA; Cristini V; Lowengrub J
    J Theor Biol; 2013 Mar; 320():131-51. PubMed ID: 23220211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model.
    Jain RK; Tong RT; Munn LL
    Cancer Res; 2007 Mar; 67(6):2729-35. PubMed ID: 17363594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of heterogeneous vasculature on interstitial transport within a solid tumor.
    Zhao J; Salmon H; Sarntinoranont M
    Microvasc Res; 2007 May; 73(3):224-36. PubMed ID: 17307203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Microvascular Invasion in Hepatocellular Carcinoma Using Computational Modeling of Interstitial Fluid Pressure and Velocity.
    Zheng L; Yang C; Sheng R; Rao S; Wu L; Zeng M; Dai Y
    J Magn Reson Imaging; 2023 Nov; 58(5):1366-1374. PubMed ID: 36762823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Modeling of Interstitial Fluid Pressure and Velocity in Head and Neck Cancer Based on Dynamic Contrast-Enhanced Magnetic Resonance Imaging: Feasibility Analysis.
    LoCastro E; Paudyal R; Mazaheri Y; Hatzoglou V; Oh JH; Lu Y; Konar AS; Vom Eigen K; Ho A; Ewing JR; Lee N; Deasy JO; Shukla-Dave A
    Tomography; 2020 Jun; 6(2):129-138. PubMed ID: 32548289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug transport modeling in solid tumors: A computational exploration of spatial heterogeneity of biophysical properties.
    Salavati H; Pullens P; Ceelen W; Debbaut C
    Comput Biol Med; 2023 Sep; 163():107190. PubMed ID: 37392620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical modeling of fluid flow in solid tumors.
    Soltani M; Chen P
    PLoS One; 2011; 6(6):e20344. PubMed ID: 21673952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interstitial fluid flow and drug delivery in vascularized tumors: a computational model.
    Welter M; Rieger H
    PLoS One; 2013; 8(8):e70395. PubMed ID: 23940570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical Modeling of Interstitial Fluid Flow Coupled with Blood Flow through a Remodeled Solid Tumor Microvascular Network.
    Soltani M; Chen P
    PLoS One; 2013; 8(6):e67025. PubMed ID: 23840579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of fluid friction on interstitial fluid flow coupled with blood flow through solid tumor microvascular network.
    Sefidgar M; Soltani M; Raahemifar K; Bazmara H
    Comput Math Methods Med; 2015; 2015():673426. PubMed ID: 25960764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamics and convection enhanced macromolecular fluid transport in soft biological tissues: Application to solid tumor.
    Dey B; Sekhar GPR
    J Theor Biol; 2016 Apr; 395():62-86. PubMed ID: 26851443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interstitial hydraulic conductivity and interstitial fluid pressure for avascular or poorly vascularized tumors.
    Liu LJ; Schlesinger M
    J Theor Biol; 2015 Sep; 380():1-8. PubMed ID: 25986434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of interstitial pressure on therapeutic agent transport: coupling with the tumor blood and lymphatic vascular systems.
    Wu M; Frieboes HB; Chaplain MA; McDougall SR; Cristini V; Lowengrub JS
    J Theor Biol; 2014 Aug; 355():194-207. PubMed ID: 24751927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Modeling of Interstitial Fluid Pressure and Velocity in Non-small Cell Lung Cancer Brain Metastases Treated With Stereotactic Radiosurgery.
    Swinburne N; LoCastro E; Paudyal R; Oh JH; Taunk NK; Shah A; Beal K; Vachha B; Young RJ; Holodny AI; Shukla-Dave A; Hatzoglou V
    Front Neurol; 2020; 11():402. PubMed ID: 32547470
    [No Abstract]   [Full Text] [Related]  

  • 18. Numerical modeling of drug delivery in a dynamic solid tumor microvasculature.
    Sefidgar M; Soltani M; Raahemifar K; Sadeghi M; Bazmara H; Bazargan M; Mousavi Naeenian M
    Microvasc Res; 2015 May; 99():43-56. PubMed ID: 25724978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A poroelastic model of transcapillary flow in normal tissue.
    Speziale S; Tenti G; Sivaloganathan S
    Microvasc Res; 2008 Mar; 75(2):285-95. PubMed ID: 17707442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 3D CFD model of the interstitial fluid pressure and drug distribution in heterogeneous tumor nodules during intraperitoneal chemotherapy.
    Steuperaert M; Debbaut C; Carlier C; De Wever O; Descamps B; Vanhove C; Ceelen W; Segers P
    Drug Deliv; 2019 Dec; 26(1):404-415. PubMed ID: 30929523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.