These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85. An acoustic-logging transmission-network model. Fa L; Castagna JP; Hovem JM; Dong D J Acoust Soc Am; 2002 May; 111(5 Pt 1):2158-65. PubMed ID: 12051435 [TBL] [Abstract][Full Text] [Related]
86. Optimization and quantification of the systematic effects of a rolling circle filter for spectral pre-processing. Mirz S; Groessle R; Kraus A Analyst; 2019 Jul; 144(14):4281-4287. PubMed ID: 31180082 [TBL] [Abstract][Full Text] [Related]
87. Positron stopping in elemental systems: Monte Carlo calculations and scaling properties. Ghosh VJ; Aers GC Phys Rev B Condens Matter; 1995 Jan; 51(1):45-59. PubMed ID: 9977057 [No Abstract] [Full Text] [Related]
88. Acoustic source characterization for a logging while drilling tool: Theoretical and experimental modeling. Xu S; Zhuang C; Su Y; Liu Y; Zhang Z; Guo S; Tang X J Acoust Soc Am; 2018 Sep; 144(3):EL178. PubMed ID: 30424672 [TBL] [Abstract][Full Text] [Related]
89. Application of deep learning in quantitative analysis of the infrared spectrum of logging gas. Song L; Wu H; Yang Y; Guo Q; Li J Appl Opt; 2020 Jun; 59(17):E9-E16. PubMed ID: 32543507 [TBL] [Abstract][Full Text] [Related]
91. Multi-factor association dependence modelling for project risk analysis. Kim BC MethodsX; 2021; 8():101443. PubMed ID: 34430332 [TBL] [Abstract][Full Text] [Related]
92. Nuclear Shell Model by the Quantum Monte Carlo Diagonalization Method. Honma M; Mizusaki T; Otsuka T Phys Rev Lett; 1996 Oct; 77(16):3315-3318. PubMed ID: 10062189 [No Abstract] [Full Text] [Related]
93. Systemic risk measured by the resiliency of the system to initial shocks. Klinčić L; Zlatić V; Caldarelli G; Štefančić H Phys Rev E; 2023 Oct; 108(4-1):044303. PubMed ID: 37978656 [TBL] [Abstract][Full Text] [Related]
94. Monte Carlo methods for the nuclear shell model. Johnson CW; Koonin SE; Lang GH; Ormand WE Phys Rev Lett; 1992 Nov; 69(22):3157-3160. PubMed ID: 10046745 [No Abstract] [Full Text] [Related]
95. Shell Model Monte Carlo Studies of gamma -Soft Nuclei. Alhassid Y; Bertsch GF; Dean DJ; Koonin SE Phys Rev Lett; 1996 Aug; 77(8):1444-1447. PubMed ID: 10063080 [No Abstract] [Full Text] [Related]
96. Monte Carlo simulations of (e,2e) experiments on solids. Vos M; Bottema M Phys Rev B Condens Matter; 1996 Aug; 54(8):5946-5954. PubMed ID: 9986563 [No Abstract] [Full Text] [Related]
97. Optical low-coherence reflectometry to enhance monte Carlo modeling of skin. Barton JK; Milner TE; Pfefer TJ; Nelson JS; Welch AJ J Biomed Opt; 1997 Apr; 2(2):226-34. PubMed ID: 23014877 [No Abstract] [Full Text] [Related]
98. Monte Carlo evaluation of path integrals for the nuclear shell model. Lang GH; Johnson CW; Koonin SE; Ormand WE Phys Rev C Nucl Phys; 1993 Oct; 48(4):1518-1545. PubMed ID: 9968994 [No Abstract] [Full Text] [Related]
99. Monte Carlo modeling of ionospheric oxygen acceleration by cyclotron resonance with broad-band electromagnetic turbulence. Retterer JM; Chang T; Crew GB; Jasperse JR; Winningham JD Phys Rev Lett; 1987 Jul; 59(1):148-151. PubMed ID: 10035125 [No Abstract] [Full Text] [Related]
100. Monte Carlo study of antiferromagnetic nuclear ordering in Cu. Frisken SJ; Miller DJ Phys Rev Lett; 1988 Aug; 61(8):1017-1020. PubMed ID: 10039493 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]