These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 26123273)
1. A New Phase Change Material Based on Potassium Nitrate with Silica and Alumina Nanoparticles for Thermal Energy Storage. Chieruzzi M; Miliozzi A; Crescenzi T; Torre L; Kenny JM Nanoscale Res Lett; 2015 Dec; 10(1):984. PubMed ID: 26123273 [TBL] [Abstract][Full Text] [Related]
2. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage. Chieruzzi M; Cerritelli GF; Miliozzi A; Kenny JM Nanoscale Res Lett; 2013 Oct; 8(1):448. PubMed ID: 24168168 [TBL] [Abstract][Full Text] [Related]
3. Thermal Storage Properties of Molten Nitrate Salt-Based Nanofluids with Graphene Nanoplatelets. Xie Q; Zhu Q; Li Y Nanoscale Res Lett; 2016 Dec; 11(1):306. PubMed ID: 27325522 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and Characterization of Molten Salt Nanofluids for Thermal Energy Storage Application in Concentrated Solar Power Plants-Mechanistic Understanding of Specific Heat Capacity Enhancement. Ma B; Shin D; Banerjee D Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33207602 [TBL] [Abstract][Full Text] [Related]
5. In Situ Synthesis of Alumina Nanoparticles in a Binary Carbonate Salt Eutectic for Enhancing Heat Capacity. Nayfeh Y; Rizvi SMM; El Far B; Shin D Nanomaterials (Basel); 2020 Oct; 10(11):. PubMed ID: 33120917 [TBL] [Abstract][Full Text] [Related]
6. Increment of specific heat capacity of solar salt with SiO2 nanoparticles. Andreu-Cabedo P; Mondragon R; Hernandez L; Martinez-Cuenca R; Cabedo L; Julia JE Nanoscale Res Lett; 2014; 9(1):582. PubMed ID: 25346648 [TBL] [Abstract][Full Text] [Related]
7. Transport properties of alumina nanofluids. Wong KF; Kurma T Nanotechnology; 2008 Aug; 19(34):345702. PubMed ID: 21730657 [TBL] [Abstract][Full Text] [Related]
8. Improved Thermophysical Properties and Energy Efficiency of Aqueous Ionic Liquid/MXene Nanofluid in a Hybrid PV/T Solar System. Das L; Habib K; Saidur R; Aslfattahi N; Yahya SM; Rubbi F Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32674465 [TBL] [Abstract][Full Text] [Related]
9. On the relationship between the specific heat enhancement of salt-based nanofluids and the ionic exchange capacity of nanoparticles. Mondragón R; Juliá JE; Cabedo L; Navarrete N Sci Rep; 2018 May; 8(1):7532. PubMed ID: 29760478 [TBL] [Abstract][Full Text] [Related]
10. Effects of Plasma Treated Alumina Nanoparticles on Breakdown Strength, Partial Discharge Resistance, and Thermophysical Properties of Mineral Oil-Based Nanofluids. Saman NM; Zakaria IH; Ahmad MH; Abdul-Malek Z Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34203364 [TBL] [Abstract][Full Text] [Related]
11. Performance of Graphite-Dispersed Li Karim MA; Islam M; Arthur O; Yarlagadda PK Molecules; 2020 Jan; 25(2):. PubMed ID: 31963280 [TBL] [Abstract][Full Text] [Related]
12. The Effect of In Situ Synthesis of MgO Nanoparticles on the Thermal Properties of Ternary Nitrate. Tong Z; Li L; Li Y; Wang Q; Cheng X Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640134 [TBL] [Abstract][Full Text] [Related]
13. Thermal properties analysis and thermal cycling of HITEC molten salt with h-BN nanoparticles for CSP thermal energy storage applications. Suraparaju SK; Aljaerani HA; Samykano M; Kadirgama K; Noor MM; Natarajan SK Environ Sci Pollut Res Int; 2024 Aug; 31(38):50166-50178. PubMed ID: 38625473 [TBL] [Abstract][Full Text] [Related]
14. Effect of Nanoparticles on the Thermal Stability and Reaction Kinetics in Ionic Nanofluids. Svobodova-Sedlackova A; Huete-Hernández S; Calderón A; Barreneche C; Gamallo P; Fernandez AI Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630999 [TBL] [Abstract][Full Text] [Related]
15. In situ production of titanium dioxide nanoparticles in molten salt phase for thermal energy storage and heat-transfer fluid applications. Lasfargues M; Bell A; Ding Y J Nanopart Res; 2016; 18():150. PubMed ID: 27358585 [TBL] [Abstract][Full Text] [Related]
16. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification. J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480 [TBL] [Abstract][Full Text] [Related]
18. Improvement in Thermal Storage Effectiveness of Paraffin with Addition of Aluminum Oxide Nanoparticles. Gunjo DG; Yadav VK; Sinha DK; Elkotb MA; Ahmed GMS; Hossain N; Abdelmohimen MAH Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806552 [TBL] [Abstract][Full Text] [Related]
19. Recent Advances in Molten Salt-Based Nanofluids as Thermal Energy Storage in Concentrated Solar Power: A Comprehensive Review. Abir FM; Altwarah Q; Rana MT; Shin D Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399205 [TBL] [Abstract][Full Text] [Related]
20. Mechanism exploration of the enhancement of thermal energy storage in molten salt nanofluid. Li Z; Cui L; Li B; Du X Phys Chem Chem Phys; 2021 Jun; 23(23):13181-13189. PubMed ID: 34085072 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]