These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 26123335)

  • 1. A simple sensor calibration technique for estimating the 3D pose of endoscopic instruments.
    Lahanas V; Loukas C; Georgiou E
    Surg Endosc; 2016 Mar; 30(3):1198-204. PubMed ID: 26123335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated approach to endoscopic instrument tracking for augmented reality applications in surgical simulation training.
    Loukas C; Lahanas V; Georgiou E
    Int J Med Robot; 2013 Dec; 9(4):e34-51. PubMed ID: 23355307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hand-eye calibration for rigid laparoscopes using an invariant point.
    Thompson S; Stoyanov D; Schneider C; Gurusamy K; Ourselin S; Davidson B; Hawkes D; Clarkson MJ
    Int J Comput Assist Radiol Surg; 2016 Jun; 11(6):1071-80. PubMed ID: 26995597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-demand calibration and evaluation for electromagnetically tracked laparoscope in augmented reality visualization.
    Liu X; Plishker W; Zaki G; Kang S; Kane TD; Shekhar R
    Int J Comput Assist Radiol Surg; 2016 Jun; 11(6):1163-71. PubMed ID: 27250853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Augmented reality haptic (ARH): an approach of electromagnetic tracking in minimally invasive surgery.
    Pagador JB; Sánchez LF; Sánchez JA; Bustos P; Moreno J; Sánchez-Margallo FM
    Int J Comput Assist Radiol Surg; 2011 Mar; 6(2):257-63. PubMed ID: 20596898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An adaptive and fully automatic method for estimating the 3D position of bendable instruments using endoscopic images.
    Cabras P; Nageotte F; Zanne P; Doignon C
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28387448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tracking endoscopic instruments without localizer: image analysis-based approach.
    Tonet O; Ramesh TU; Megali G; Dario P
    Stud Health Technol Inform; 2006; 119():544-9. PubMed ID: 16404118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracking endoscopic instruments without a localizer: a shape-analysis-based approach.
    Tonet O; Thoranaghatte RU; Megali G; Dario P
    Comput Aided Surg; 2007 Jan; 12(1):35-42. PubMed ID: 17364657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous localization and calibration for electromagnetic tracking systems.
    Sadjadi H; Hashtrudi-Zaad K; Fichtinger G
    Int J Med Robot; 2016 Jun; 12(2):189-98. PubMed ID: 26018294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intraoperative magnetic tracker calibration using a magneto-optic hybrid tracker for 3-D ultrasound-based navigation in laparoscopic surgery.
    Nakamoto M; Nakada K; Sato Y; Konishi K; Hashizume M; Tamura S
    IEEE Trans Med Imaging; 2008 Feb; 27(2):255-70. PubMed ID: 18334447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New approaches to online estimation of electromagnetic tracking errors for laparoscopic ultrasonography.
    Feuerstein M; Reichl T; Vogel J; Traub J; Navab N
    Comput Aided Surg; 2008 Sep; 13(5):311-23. PubMed ID: 18821348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous Electromagnetic Tracking and Calibration for Dynamic Field Distortion Compensation.
    Sadjadi H; Hashtrudi-Zaad K; Fichtinger G
    IEEE Trans Biomed Eng; 2016 Aug; 63(8):1771-81. PubMed ID: 26595908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing position and orientation accuracy of different electromagnetic sensors for tracking during interventions.
    Nijkamp J; Schermers B; Schmitz S; de Jonge S; Kuhlmann K; van der Heijden F; Sonke JJ; Ruers T
    Int J Comput Assist Radiol Surg; 2016 Aug; 11(8):1487-98. PubMed ID: 26811081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A bronchoscopic navigation system using bronchoscope center calibration for accurate registration of electromagnetic tracker and CT volume without markers.
    Luo X
    Med Phys; 2014 Jun; 41(6):061913. PubMed ID: 24877824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural flexibility of laparoscopic instruments: implication for the design of virtual reality simulators.
    Shang D; Carnahan H; Dubrowski A
    Stud Health Technol Inform; 2006; 119():503-5. PubMed ID: 16404108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation and calibration of an electromagnetic tracking device for biomechanical analysis of lifting tasks.
    Périé D; Tate AJ; Cheng PL; Dumas GA
    J Biomech; 2002 Feb; 35(2):293-7. PubMed ID: 11784548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a wireless hybrid navigation system for laparoscopic surgery.
    Ren H; Rank D; Merdes M; Stallkamp J; Kazanzides P
    Stud Health Technol Inform; 2011; 163():479-85. PubMed ID: 21335843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An actuated force feedback-enabled laparoscopic instrument for robotic-assisted surgery.
    Moradi Dalvand M; Shirinzadeh B; Shamdani AH; Smith J; Zhong Y
    Int J Med Robot; 2014 Mar; 10(1):11-21. PubMed ID: 23640908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of a miniature electromagnetic position tracker.
    Hummel J; Figl M; Kollmann C; Bergmann H; Birkfellner W
    Med Phys; 2002 Oct; 29(10):2205-12. PubMed ID: 12408292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time catheter tracking for high-dose-rate prostate brachytherapy using an electromagnetic 3D-guidance device: a preliminary performance study.
    Zhou J; Sebastian E; Mangona V; Yan D
    Med Phys; 2013 Feb; 40(2):021716. PubMed ID: 23387739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.