These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 26123391)
1. Multiple allosteric effectors control the affinity of DasR for its target sites. Tenconi E; Urem M; Świątek-Połatyńska MA; Titgemeyer F; Muller YA; van Wezel GP; Rigali S Biochem Biophys Res Commun; 2015 Aug; 464(1):324-9. PubMed ID: 26123391 [TBL] [Abstract][Full Text] [Related]
2. Crystal Structures of the Global Regulator DasR from Streptomyces coelicolor: Implications for the Allosteric Regulation of GntR/HutC Repressors. Fillenberg SB; Friess MD; Körner S; Böckmann RA; Muller YA PLoS One; 2016; 11(6):e0157691. PubMed ID: 27337024 [TBL] [Abstract][Full Text] [Related]
3. Functional analysis of the N-acetylglucosamine metabolic genes of Streptomyces coelicolor and role in control of development and antibiotic production. Świątek MA; Tenconi E; Rigali S; van Wezel GP J Bacteriol; 2012 Mar; 194(5):1136-44. PubMed ID: 22194457 [TBL] [Abstract][Full Text] [Related]
4. The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. Rigali S; Nothaft H; Noens EE; Schlicht M; Colson S; Müller M; Joris B; Koerten HK; Hopwood DA; Titgemeyer F; van Wezel GP Mol Microbiol; 2006 Sep; 61(5):1237-51. PubMed ID: 16925557 [TBL] [Abstract][Full Text] [Related]
5. Genome-wide analysis of in vivo binding of the master regulator DasR in Streptomyces coelicolor identifies novel non-canonical targets. Świątek-Połatyńska MA; Bucca G; Laing E; Gubbens J; Titgemeyer F; Smith CP; Rigali S; van Wezel GP PLoS One; 2015; 10(4):e0122479. PubMed ID: 25875084 [TBL] [Abstract][Full Text] [Related]
6. Engineering of N-acetylglucosamine metabolism for improved antibiotic production in Streptomyces coelicolor A3(2) and an unsuspected role of NagA in glucosamine metabolism. Świątek MA; Urem M; Tenconi E; Rigali S; van Wezel GP Bioengineered; 2012; 3(5):280-5. PubMed ID: 22892576 [TBL] [Abstract][Full Text] [Related]
7. Why does Escherichia coli grow more slowly on glucosamine than on N-acetylglucosamine? Effects of enzyme levels and allosteric activation of GlcN6P deaminase (NagB) on growth rates. Alvarez-Añorve LI; Calcagno ML; Plumbridge J J Bacteriol; 2005 May; 187(9):2974-82. PubMed ID: 15838023 [TBL] [Abstract][Full Text] [Related]
8. Allosteric Activation of Escherichia coli Glucosamine-6-Phosphate Deaminase (NagB) In Vivo Justified by Intracellular Amino Sugar Metabolite Concentrations. Álvarez-Añorve LI; Gaugué I; Link H; Marcos-Viquez J; Díaz-Jiménez DM; Zonszein S; Bustos-Jaimes I; Schmitz-Afonso I; Calcagno ML; Plumbridge J J Bacteriol; 2016 Jun; 198(11):1610-1620. PubMed ID: 27002132 [TBL] [Abstract][Full Text] [Related]
9. NgcE Iinuma C; Saito A; Ohnuma T; Tenconi E; Rosu A; Colson S; Mizutani Y; Liu F; Świątek-Połatyńska M; van Wezel GP; Rigali S; Fujii T; Miyashita K Microbes Environ; 2018 Sep; 33(3):272-281. PubMed ID: 30089751 [TBL] [Abstract][Full Text] [Related]
10. Genome-wide transcriptome response of Streptomyces tsukubaensis to N-acetylglucosamine: effect on tacrolimus biosynthesis. Ordóñez-Robles M; Rodríguez-García A; Martín JF Microbiol Res; 2018 Dec; 217():14-22. PubMed ID: 30384905 [TBL] [Abstract][Full Text] [Related]
11. Identification of two-component system AfsQ1/Q2 regulon and its cross-regulation with GlnR in Streptomyces coelicolor. Wang R; Mast Y; Wang J; Zhang W; Zhao G; Wohlleben W; Lu Y; Jiang W Mol Microbiol; 2013 Jan; 87(1):30-48. PubMed ID: 23106203 [TBL] [Abstract][Full Text] [Related]
12. Regulon of the N-acetylglucosamine utilization regulator NagR in Bacillus subtilis. Bertram R; Rigali S; Wood N; Lulko AT; Kuipers OP; Titgemeyer F J Bacteriol; 2011 Jul; 193(14):3525-36. PubMed ID: 21602348 [TBL] [Abstract][Full Text] [Related]
13. DasR is a pleiotropic regulator required for antibiotic production, pigment biosynthesis, and morphological development in Saccharopolyspora erythraea. Liao CH; Xu Y; Rigali S; Ye BC Appl Microbiol Biotechnol; 2015 Dec; 99(23):10215-24. PubMed ID: 26272095 [TBL] [Abstract][Full Text] [Related]
14. The Nitrogen Regulatory PII Protein (GlnB) and Rodionova IA; Goodacre N; Babu M; Emili A; Uetz P; Saier MH J Bacteriol; 2018 Mar; 200(5):. PubMed ID: 29229699 [TBL] [Abstract][Full Text] [Related]
15. Regulation of PTS gene expression by the homologous transcriptional regulators, Mlc and NagC, in Escherichia coli (or how two similar repressors can behave differently). Plumbridge J J Mol Microbiol Biotechnol; 2001 Jul; 3(3):371-80. PubMed ID: 11361067 [TBL] [Abstract][Full Text] [Related]
16. GntR Family Regulator DasR Controls Acetate Assimilation by Directly Repressing the You D; Zhang BQ; Ye BC J Bacteriol; 2018 Jul; 200(13):. PubMed ID: 29686136 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of bleomycin production in Streptomyces verticillus through global metabolic regulation of N-acetylglucosamine and assisted metabolic profiling analysis. Chen H; Cui J; Wang P; Wang X; Wen J Microb Cell Fact; 2020 Feb; 19(1):32. PubMed ID: 32054531 [TBL] [Abstract][Full Text] [Related]
18. Structural insight into operator dre-sites recognition and effector binding in the GntR/HutC transcription regulator NagR. Fillenberg SB; Grau FC; Seidel G; Muller YA Nucleic Acids Res; 2015 Jan; 43(2):1283-96. PubMed ID: 25564531 [TBL] [Abstract][Full Text] [Related]
19. Effects of the pleiotropic regulator DasR on lincomycin production in Streptomyces lincolnensis. Pai H; Liu Y; Zhang C; Su J; Lu W Appl Microbiol Biotechnol; 2024 Jun; 108(1):373. PubMed ID: 38878095 [TBL] [Abstract][Full Text] [Related]
20. Repression and induction of the nag regulon of Escherichia coli K-12: the roles of nagC and nagA in maintenance of the uninduced state. Plumbridge JA Mol Microbiol; 1991 Aug; 5(8):2053-62. PubMed ID: 1766379 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]