BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26123676)

  • 1. Interpulse multifrequency electrical impedance measurements during electroporation of adherent differentiated myotubes.
    García-Sánchez T; Azan A; Leray I; Rosell-Ferrer J; Bragós R; Mir LM
    Bioelectrochemistry; 2015 Oct; 105():123-35. PubMed ID: 26123676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro analysis of various cell lines responses to electroporative electric pulses by means of electrical impedance spectroscopy.
    García-Sánchez T; Bragós R; Mir LM
    Biosens Bioelectron; 2018 Oct; 117():207-216. PubMed ID: 29906768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transfection of HeLa-cells with pEGFP plasmid by impedance power-assisted electroporation.
    Glahder J; Norrild B; Persson MB; Persson BR
    Biotechnol Bioeng; 2005 Nov; 92(3):267-76. PubMed ID: 16161165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new spiral microelectrode assembly for electroporation and impedance measurements of adherent cell monolayers.
    García-Sánchez T; Guitart M; Rosell-Ferrer J; Gómez-Foix AM; Bragós R
    Biomed Microdevices; 2014 Aug; 16(4):575-90. PubMed ID: 24682587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo electrical impedance measurements during and after electroporation of rat liver.
    Ivorra A; Rubinsky B
    Bioelectrochemistry; 2007 May; 70(2):287-95. PubMed ID: 17140860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitigation of impedance changes due to electroporation therapy using bursts of high-frequency bipolar pulses.
    Bhonsle SP; Arena CB; Sweeney DC; Davalos RV
    Biomed Eng Online; 2015; 14 Suppl 3(Suppl 3):S3. PubMed ID: 26355870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impedance analysis of adherent cells after in situ electroporation: non-invasive monitoring during intracellular manipulations.
    Stolwijk JA; Hartmann C; Balani P; Albermann S; Keese CR; Giaever I; Wegener J
    Biosens Bioelectron; 2011 Aug; 26(12):4720-7. PubMed ID: 21684144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo electrical conductivity measurements during and after tumor electroporation: conductivity changes reflect the treatment outcome.
    Ivorra A; Al-Sakere B; Rubinsky B; Mir LM
    Phys Med Biol; 2009 Oct; 54(19):5949-63. PubMed ID: 19759406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic resonance electrical impedance tomography for measuring electrical conductivity during electroporation.
    Kranjc M; Bajd F; Serša I; Miklavčič D
    Physiol Meas; 2014 Jun; 35(6):985-96. PubMed ID: 24844299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic resonance electrical impedance tomography for monitoring electric field distribution during tissue electroporation.
    Kranjc M; Bajd F; Serša I; Miklavčič D
    IEEE Trans Med Imaging; 2011 Oct; 30(10):1771-8. PubMed ID: 21521664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extraction of electrical characteristics from pixels of multifrequency EIT images.
    Fitzgerald AJ; Thomas BJ; Cornish BH; Michael GJ; Ward LC
    Physiol Meas; 1997 May; 18(2):107-18. PubMed ID: 9183805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological changes may dominate the electrical properties of liver during reversible electroporation: Measurements and modelling.
    García-Sánchez T; Voyer D; Poignard C; Mir LM
    Bioelectrochemistry; 2020 Dec; 136():107627. PubMed ID: 32784102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in the passive electrical properties of human stratum corneum due to electroporation.
    Pliquett U; Langer R; Weaver JC
    Biochim Biophys Acta; 1995 Nov; 1239(2):111-21. PubMed ID: 7488616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of cell electroporation on the conductivity of a cell suspension.
    Pavlin M; Kanduser M; Rebersek M; Pucihar G; Hart FX; Magjarevic R; Miklavcic D
    Biophys J; 2005 Jun; 88(6):4378-90. PubMed ID: 15792975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of the electrophoresis and pulse energy for siRNA-mediated gene silencing by electroporation in differentiated primary human myotubes.
    Pavlin M; Škorja Milić N; Kandušer M; Pirkmajer S
    Biomed Eng Online; 2024 May; 23(1):47. PubMed ID: 38750477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical Pulse Stimulation of Primary Human Skeletal Muscle Cells.
    Nikolić N; Aas V
    Methods Mol Biol; 2019; 1889():17-24. PubMed ID: 30367406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical impedance tomographic imaging of a single cell electroporation.
    Meir A; Rubinsky B
    Biomed Microdevices; 2014 Jun; 16(3):427-37. PubMed ID: 24573503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 99mTc-DTPA uptake and electrical impedance measurements in verification of in vivo electropermeabilization efficiency in rat muscle.
    Grafström G; Engström P; Salford LG; Persson BR
    Cancer Biother Radiopharm; 2006 Dec; 21(6):623-35. PubMed ID: 17257078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods of optimization of electrical impedance tomography for imaging tissue electroporation.
    Granot Y; Rubinsky B
    Physiol Meas; 2007 Oct; 28(10):1135-47. PubMed ID: 17906383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid Impedance Spectroscopy for Monitoring Tissue Impedance, Temperature, and Treatment Outcome During Electroporation-Based Therapies.
    Lorenzo MF; Bhonsle SP; Arena CB; Davalos RV
    IEEE Trans Biomed Eng; 2021 May; 68(5):1536-1546. PubMed ID: 33156779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.