BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 2612377)

  • 1. The development of the Xenopus retinofugal pathway: optic fibers join a pre-existing tract.
    Easter SS; Taylor JS
    Development; 1989 Nov; 107(3):553-73. PubMed ID: 2612377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The development of a simple scaffold of axon tracts in the brain of the embryonic zebrafish, Brachydanio rerio.
    Wilson SW; Ross LS; Parrett T; Easter SS
    Development; 1990 Jan; 108(1):121-45. PubMed ID: 2351059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stereotyped pathway selection by growth cones of early epiphysial neurons in the embryonic zebrafish.
    Wilson SW; Easter SS
    Development; 1991 Jul; 112(3):723-46. PubMed ID: 1935687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in fiber order in the optic nerve and tract of rat embryos.
    Chan SO; Guillery RW
    J Comp Neurol; 1994 Jun; 344(1):20-32. PubMed ID: 8063954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precocious pathfinding: retinal axons can navigate in an axonless brain.
    Cornel E; Holt C
    Neuron; 1992 Dec; 9(6):1001-11. PubMed ID: 1281416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinal projections in the freshwater butterfly fish, Pantodon buchholzi (Osteoglossoidei). I. Cytoarchitectonic analysis and primary visual pathways.
    Butler AB; Saidel WM
    Brain Behav Evol; 1991; 38(2-3):127-53. PubMed ID: 1742599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Initial tract formation in the mouse brain.
    Easter SS; Ross LS; Frankfurter A
    J Neurosci; 1993 Jan; 13(1):285-99. PubMed ID: 8423474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stages of growth of hamster retinofugal axons: implications for developing axonal pathways with multiple targets.
    Bhide PG; Frost DO
    J Neurosci; 1991 Feb; 11(2):485-504. PubMed ID: 1992013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate pathways which guide growing axons in Xenopus embryos.
    Katz MJ; Lasek RJ
    J Comp Neurol; 1979 Feb; 183(4):817-31. PubMed ID: 762274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does timing of axon outgrowth influence initial retinotectal topography in Xenopus?
    Holt CE
    J Neurosci; 1984 Apr; 4(4):1130-52. PubMed ID: 6325604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The organization of the fibers in the optic nerve of normal and tectum-less Rana pipiens.
    Reh TA; Pitts E; Constantine-Paton M
    J Comp Neurol; 1983 Aug; 218(3):282-96. PubMed ID: 6604077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organization of ascending projections from the optic tectum and mesencephalic pretectal gray in Rana pipiens.
    Montgomery NM; Fite KV
    Vis Neurosci; 1991 Nov; 7(5):459-78. PubMed ID: 1764416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homing behaviour of axons in the embryonic vertebrate brain.
    Harris WA
    Nature; 1986 Mar 20-26; 320(6059):266-9. PubMed ID: 3960107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of the optic nerve in Xenopus laevis. I. Early development and organization.
    Cima C; Grant P
    J Embryol Exp Morphol; 1982 Dec; 72():225-49. PubMed ID: 7183741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathways of regenerated retinotectal axons in goldfish. I. Optic nerve, tract and tectal fascicle layer.
    Stuermer CA
    J Embryol Exp Morphol; 1986 Apr; 93():1-28. PubMed ID: 3734679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Segregation of optic axons based on central target: the medial optic tract in Rana pipiens.
    Montgomery NM; Fite KV; Li Z
    Neurosci Lett; 1995 Aug; 195(3):199-202. PubMed ID: 8584209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal pathfinding during development of the rostral brain in Xenopus.
    Key B; Anderson RB
    Clin Exp Pharmacol Physiol; 1999 Sep; 26(9):752-4. PubMed ID: 10499168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regionally specific expression of L1 and sialylated NCAM in the retinofugal pathway of mouse embryos.
    Chung KY; Leung KM; Lin CC; Tam KC; Hao YL; Taylor JS; Chan SO
    J Comp Neurol; 2004 Apr; 471(4):482-98. PubMed ID: 15022265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tenascin in the developing chick visual system: distribution and potential role as a modulator of retinal axon growth.
    Perez RG; Halfter W
    Dev Biol; 1993 Mar; 156(1):278-92. PubMed ID: 7680630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The development and restriction of the ipsilateral retinofugal projection in the chick.
    O'Leary DM; Gerfen CR; Cowan WM
    Brain Res; 1983 Oct; 312(1):93-109. PubMed ID: 6652510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.