These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 26123779)

  • 1. Renal plasticity in response to feeding in the Burmese python, Python molurus bivittatus.
    Esbaugh AJ; Secor SM; Grosell M
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Oct; 188():120-6. PubMed ID: 26123779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of carbonic anhydrase XIII in the erythrocytes of the Burmese python, Python molurus bivittatus.
    Esbaugh AJ; Secor SM; Grosell M
    Comp Biochem Physiol B Biochem Mol Biol; 2015 Sep; 187():71-7. PubMed ID: 26005204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of meal size on postprandial responses in juvenile Burmese pythons (Python molurus).
    Secor SM; Diamond J
    Am J Physiol; 1997 Mar; 272(3 Pt 2):R902-12. PubMed ID: 9087654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated responses of Na+/HCO3- cotransporters and V-type H+-ATPases in the fish gill and kidney during respiratory acidosis.
    Perry SF; Furimsky M; Bayaa M; Georgalis T; Shahsavarani A; Nickerson JG; Moon TW
    Biochim Biophys Acta; 2003 Dec; 1618(2):175-84. PubMed ID: 14729154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selected regulation of gastrointestinal acid-base secretion and tissue metabolism for the diamondback water snake and Burmese python.
    Secor SM; Taylor JR; Grosell M
    J Exp Biol; 2012 Jan; 215(Pt 1):185-96. PubMed ID: 22162867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene expression after freshwater transfer in gills and opercular epithelia of killifish: insight into divergent mechanisms of ion transport.
    Scott GR; Claiborne JB; Edwards SL; Schulte PM; Wood CM
    J Exp Biol; 2005 Jul; 208(Pt 14):2719-29. PubMed ID: 16000541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional changes with feeding in the gastro-intestinal epithelia of the Burmese python (Python molurus).
    Helmstetter C; Reix N; T'Flachebba M; Pope RK; Secor SM; Le Maho Y; Lignot JH
    Zoolog Sci; 2009 Sep; 26(9):632-8. PubMed ID: 19799514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cationic pathway of pH regulation in larvae of Anopheles gambiae.
    Okech BA; Boudko DY; Linser PJ; Harvey WR
    J Exp Biol; 2008 Mar; 211(Pt 6):957-68. PubMed ID: 18310121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole transcriptome analysis of the fasting and fed Burmese python heart: insights into extreme physiological cardiac adaptation.
    Wall CE; Cozza S; Riquelme CA; McCombie WR; Heimiller JK; Marr TG; Leinwand LA
    Physiol Genomics; 2011 Jan; 43(2):69-76. PubMed ID: 21045117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-prandial alkaline tide in freshwater rainbow trout: effects of meal anticipation on recovery from acid-base and ion regulatory disturbances.
    Cooper CA; Wilson RW
    J Exp Biol; 2008 Aug; 211(Pt 15):2542-50. PubMed ID: 18626090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. V-H+ -ATPase translocation during blood alkalosis in dogfish gills: interaction with carbonic anhydrase and involvement in the postfeeding alkaline tide.
    Tresguerres M; Parks SK; Wood CM; Goss GG
    Am J Physiol Regul Integr Comp Physiol; 2007 May; 292(5):R2012-9. PubMed ID: 17204588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determinants of the postfeeding metabolic response of Burmese pythons, Python molurus.
    Secor SM; Diamond J
    Physiol Zool; 1997; 70(2):202-12. PubMed ID: 9231393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered expression of renal acid-base transporters in rats with lithium-induced NDI.
    Kim YH; Kwon TH; Christensen BM; Nielsen J; Wall SM; Madsen KM; Frøkiaer J; Nielsen S
    Am J Physiol Renal Physiol; 2003 Dec; 285(6):F1244-57. PubMed ID: 12944321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ureter obstruction alters expression of renal acid-base transport proteins in rat kidney.
    Wang G; Li C; Kim SW; Ring T; Wen J; Djurhuus JC; Wang W; Nielsen S; Frøkiaer J
    Am J Physiol Renal Physiol; 2008 Aug; 295(2):F497-506. PubMed ID: 18508879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane-bound carbonic anhydrases in osteoclasts.
    Riihonen R; Supuran CT; Parkkila S; Pastorekova S; Väänänen HK; Laitala-Leinonen T
    Bone; 2007 Apr; 40(4):1021-31. PubMed ID: 17291844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of renal Na+/H+ exchange in cadmium-intoxicated rats.
    Ahn DW; Chung JM; Kim JY; Kim KR; Park YS
    Toxicol Appl Pharmacol; 2005 Apr; 204(1):91-8. PubMed ID: 15781297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of cytosolic and membrane-bound carbonic anhydrase in renal control of acid-base balance in rainbow trout, Oncorhynchus mykiss.
    Georgalis T; Gilmour KM; Yorston J; Perry SF
    Am J Physiol Renal Physiol; 2006 Aug; 291(2):F407-21. PubMed ID: 16571594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intestinal transport following transfer to increased salinity in an anadromous fish (Oncorhynchus mykiss).
    Genz J; Esbaugh AJ; Grosell M
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Jun; 159(2):150-8. PubMed ID: 21349342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of ion transporter expression in gill mitochondrion-rich cells of eels acclimated to low-Na(+) or-Cl(-) freshwater.
    Tse WK; Chow SC; Lai KP; Au DW; Wong CK
    J Exp Zool A Ecol Genet Physiol; 2011 Aug; 315(7):385-93. PubMed ID: 21455947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic diseases of acid-base transporters.
    Alper SL
    Annu Rev Physiol; 2002; 64():899-923. PubMed ID: 11826292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.