These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 26123794)
41. Persistence of myelofibrosis treated with ruxolitinib: biology and clinical implications. Ross DM; Babon JJ; Tvorogov D; Thomas D Haematologica; 2021 May; 106(5):1244-1253. PubMed ID: 33472356 [TBL] [Abstract][Full Text] [Related]
43. Mutations of JAK2 in acute lymphoblastic leukaemias associated with Down's syndrome. Bercovich D; Ganmore I; Scott LM; Wainreb G; Birger Y; Elimelech A; Shochat C; Cazzaniga G; Biondi A; Basso G; Cario G; Schrappe M; Stanulla M; Strehl S; Haas OA; Mann G; Binder V; Borkhardt A; Kempski H; Trka J; Bielorei B; Avigad S; Stark B; Smith O; Dastugue N; Bourquin JP; Tal NB; Green AR; Izraeli S Lancet; 2008 Oct; 372(9648):1484-92. PubMed ID: 18805579 [TBL] [Abstract][Full Text] [Related]
44. Janus kinase (JAK) inhibitors in the treatment of inflammatory and neoplastic diseases. Roskoski R Pharmacol Res; 2016 Sep; 111():784-803. PubMed ID: 27473820 [TBL] [Abstract][Full Text] [Related]
45. [Research advances in the role of JAK2 mutations in acute leukemia]. Zhang HY; Zhai XW Zhongguo Dang Dai Er Ke Za Zhi; 2015 Jun; 17(6):644-9. PubMed ID: 26108332 [TBL] [Abstract][Full Text] [Related]
46. Myeloproliferative neoplasms: JAK2 signaling pathway as a central target for therapy. Pasquier F; Cabagnols X; Secardin L; Plo I; Vainchenker W Clin Lymphoma Myeloma Leuk; 2014 Sep; 14 Suppl():S23-35. PubMed ID: 25486952 [TBL] [Abstract][Full Text] [Related]
47. Overcoming acquired resistance to HSP90 inhibition by targeting JAK-STAT signalling in triple-negative breast cancer. Mumin NH; Drobnitzky N; Patel A; Lourenco LM; Cahill FF; Jiang Y; Kong A; Ryan AJ BMC Cancer; 2019 Jan; 19(1):102. PubMed ID: 30678647 [TBL] [Abstract][Full Text] [Related]
48. JAK-STAT pathway activation in malignant and nonmalignant cells contributes to MPN pathogenesis and therapeutic response. Kleppe M; Kwak M; Koppikar P; Riester M; Keller M; Bastian L; Hricik T; Bhagwat N; McKenney AS; Papalexi E; Abdel-Wahab O; Rampal R; Marubayashi S; Chen JJ; Romanet V; Fridman JS; Bromberg J; Teruya-Feldstein J; Murakami M; Radimerski T; Michor F; Fan R; Levine RL Cancer Discov; 2015 Mar; 5(3):316-31. PubMed ID: 25572172 [TBL] [Abstract][Full Text] [Related]
49. JAK2 Inhibition by Fedratinib Reduces Osteoblast Differentiation and Mineralisation of Human Mesenchymal Stem Cells. AlMuraikhi N; Alaskar H; Binhamdan S; Alotaibi A; Kassem M; Alfayez M Molecules; 2021 Jan; 26(3):. PubMed ID: 33503825 [TBL] [Abstract][Full Text] [Related]
50. The BCR-ABL1-negative myeloproliferative neoplasms: a review of JAK inhibitors in the therapeutic armamentarium. Griesshammer M; Sadjadian P Expert Opin Pharmacother; 2017 Dec; 18(18):1929-1938. PubMed ID: 29134817 [TBL] [Abstract][Full Text] [Related]
51. Phase I study of a novel oral Janus kinase 2 inhibitor, SB1518, in patients with relapsed lymphoma: evidence of clinical and biologic activity in multiple lymphoma subtypes. Younes A; Romaguera J; Fanale M; McLaughlin P; Hagemeister F; Copeland A; Neelapu S; Kwak L; Shah J; de Castro Faria S; Hart S; Wood J; Jayaraman R; Ethirajulu K; Zhu J J Clin Oncol; 2012 Nov; 30(33):4161-7. PubMed ID: 22965964 [TBL] [Abstract][Full Text] [Related]
52. The development, safety and efficacy of pacritinib for the treatment of myelofibrosis. Jain T; Mesa R Expert Rev Anticancer Ther; 2016 Nov; 16(11):1101-1108. PubMed ID: 27598824 [TBL] [Abstract][Full Text] [Related]
53. Role of altered growth factor receptor-mediated JAK2 signaling in growth and maintenance of human acute myeloid leukemia stem cells. Cook AM; Li L; Ho Y; Lin A; Li L; Stein A; Forman S; Perrotti D; Jove R; Bhatia R Blood; 2014 May; 123(18):2826-37. PubMed ID: 24668492 [TBL] [Abstract][Full Text] [Related]
54. JAK inhibitors: pharmacology and clinical activity in chronic myeloprolipherative neoplasms. Treliński J; Robak T Curr Med Chem; 2013; 20(9):1147-61. PubMed ID: 23317159 [TBL] [Abstract][Full Text] [Related]
55. A phase I, open-label, dose-escalation, multicenter study of the JAK2 inhibitor NS-018 in patients with myelofibrosis. Verstovsek S; Talpaz M; Ritchie E; Wadleigh M; Odenike O; Jamieson C; Stein B; Uno T; Mesa RA Leukemia; 2017 Feb; 31(2):393-402. PubMed ID: 27479177 [TBL] [Abstract][Full Text] [Related]
56. Myeloproliferative and lymphoproliferative disorders: State of the art. Rumi E; Baratè C; Benevolo G; Maffioli M; Ricco A; Sant'Antonio E Hematol Oncol; 2020 Apr; 38(2):121-128. PubMed ID: 31833567 [TBL] [Abstract][Full Text] [Related]
57. Methotrexate Is a JAK/STAT Pathway Inhibitor. Thomas S; Fisher KH; Snowden JA; Danson SJ; Brown S; Zeidler MP PLoS One; 2015; 10(7):e0130078. PubMed ID: 26131691 [TBL] [Abstract][Full Text] [Related]
58. Dynamic mathematical modeling of IL13-induced signaling in Hodgkin and primary mediastinal B-cell lymphoma allows prediction of therapeutic targets. Raia V; Schilling M; Böhm M; Hahn B; Kowarsch A; Raue A; Sticht C; Bohl S; Saile M; Möller P; Gretz N; Timmer J; Theis F; Lehmann WD; Lichter P; Klingmüller U Cancer Res; 2011 Feb; 71(3):693-704. PubMed ID: 21127196 [TBL] [Abstract][Full Text] [Related]
59. Somatic hypermutation of SOCS1 in lymphocyte-predominant Hodgkin lymphoma is accompanied by high JAK2 expression and activation of STAT6. Mottok A; Renné C; Willenbrock K; Hansmann ML; Bräuninger A Blood; 2007 Nov; 110(9):3387-90. PubMed ID: 17652621 [TBL] [Abstract][Full Text] [Related]
60. Molecular pathways: molecular basis for sensitivity and resistance to JAK kinase inhibitors. Meyer SC; Levine RL Clin Cancer Res; 2014 Apr; 20(8):2051-9. PubMed ID: 24583800 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]