These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 26124115)

  • 41. Complex genetics control natural variation in Arabidopsis thaliana resistance to Botrytis cinerea.
    Rowe HC; Kliebenstein DJ
    Genetics; 2008 Dec; 180(4):2237-50. PubMed ID: 18845849
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quantification of
    Scholz P; Chapman KD; Ischebeck T; Guzha A
    Bio Protoc; 2023 Aug; 13(16):e4740. PubMed ID: 37638304
    [No Abstract]   [Full Text] [Related]  

  • 43. Arabidopsis ssi2-conferred susceptibility to Botrytis cinerea is dependent on EDS5 and PAD4.
    Nandi A; Moeder W; Kachroo P; Klessig DF; Shah J
    Mol Plant Microbe Interact; 2005 Apr; 18(4):363-70. PubMed ID: 15828688
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantitative interactions: the disease outcome of Botrytis cinerea across the plant kingdom.
    Caseys C; Shi G; Soltis N; Gwinner R; Corwin J; Atwell S; Kliebenstein DJ
    G3 (Bethesda); 2021 Aug; 11(8):. PubMed ID: 34003931
    [TBL] [Abstract][Full Text] [Related]  

  • 45. UVR8 mediates UV-B-induced Arabidopsis defense responses against Botrytis cinerea by controlling sinapate accumulation.
    Demkura PV; Ballaré CL
    Mol Plant; 2012 May; 5(3):642-52. PubMed ID: 22447155
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis.
    Han L; Li GJ; Yang KY; Mao G; Wang R; Liu Y; Zhang S
    Plant J; 2010 Oct; 64(1):114-27. PubMed ID: 20659280
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes.
    Cai Q; Qiao L; Wang M; He B; Lin FM; Palmquist J; Huang SD; Jin H
    Science; 2018 Jun; 360(6393):1126-1129. PubMed ID: 29773668
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum.
    Stotz HU; Sawada Y; Shimada Y; Hirai MY; Sasaki E; Krischke M; Brown PD; Saito K; Kamiya Y
    Plant J; 2011 Jul; 67(1):81-93. PubMed ID: 21418358
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Assessing the effects of light on differentiation and virulence of the plant pathogen Botrytis cinerea: characterization of the White Collar Complex.
    Canessa P; Schumacher J; Hevia MA; Tudzynski P; Larrondo LF
    PLoS One; 2013; 8(12):e84223. PubMed ID: 24391918
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Anti-apoptotic machinery protects the necrotrophic fungus Botrytis cinerea from host-induced apoptotic-like cell death during plant infection.
    Shlezinger N; Minz A; Gur Y; Hatam I; Dagdas YF; Talbot NJ; Sharon A
    PLoS Pathog; 2011 Aug; 7(8):e1002185. PubMed ID: 21876671
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A critical role of autophagy in plant resistance to necrotrophic fungal pathogens.
    Lai Z; Wang F; Zheng Z; Fan B; Chen Z
    Plant J; 2011 Jun; 66(6):953-68. PubMed ID: 21395886
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Involvement of the cysteine protease BcAtg4 in development and virulence of Botrytis cinerea.
    Liu N; Ren W; Li F; Chen C; Ma Z
    Curr Genet; 2019 Feb; 65(1):293-300. PubMed ID: 30167777
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The pH regulator PacC: a host-dependent virulence factor in Botrytis cinerea.
    Rascle C; Dieryckx C; Dupuy JW; Muszkieta L; Souibgui E; Droux M; Bruel C; Girard V; Poussereau N
    Environ Microbiol Rep; 2018 Oct; 10(5):555-568. PubMed ID: 30066486
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Botrytis cinerea virulence is drastically reduced after disruption of chitin synthase class III gene (Bcchs3a).
    Soulié MC; Perino C; Piffeteau A; Choquer M; Malfatti P; Cimerman A; Kunz C; Boccara M; Vidal-Cros A
    Cell Microbiol; 2006 Aug; 8(8):1310-21. PubMed ID: 16882034
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Arabidopsis thaliana circadian clock is regulated by the small GTPase LIP1.
    Kevei E; Gyula P; Fehér B; Tóth R; Viczián A; Kircher S; Rea D; Dorjgotov D; Schäfer E; Millar AJ; Kozma-Bognár L; Nagy F
    Curr Biol; 2007 Sep; 17(17):1456-64. PubMed ID: 17683937
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metabolomic approaches reveal that cell wall modifications play a major role in ethylene-mediated resistance against Botrytis cinerea.
    Lloyd AJ; William Allwood J; Winder CL; Dunn WB; Heald JK; Cristescu SM; Sivakumaran A; Harren FJ; Mulema J; Denby K; Goodacre R; Smith AR; Mur LA
    Plant J; 2011 Sep; 67(5):852-68. PubMed ID: 21575089
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Neurospora circadian clock: simple or complex?
    Bell-Pedersen D; Crosthwaite SK; Lakin-Thomas PL; Merrow M; Økland M
    Philos Trans R Soc Lond B Biol Sci; 2001 Nov; 356(1415):1697-709. PubMed ID: 11710976
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cytokinin Regulates Energy Utilization in Botrytis cinerea.
    Anand G; Gupta R; Bar M
    Microbiol Spectr; 2022 Aug; 10(4):e0028022. PubMed ID: 35894612
    [TBL] [Abstract][Full Text] [Related]  

  • 59. BcSas2-Mediated Histone H4K16 Acetylation Is Critical for Virulence and Oxidative Stress Response of
    Wang G; Song L; Bai T; Liang W
    Mol Plant Microbe Interact; 2020 Oct; 33(10):1242-1251. PubMed ID: 32689887
    [TBL] [Abstract][Full Text] [Related]  

  • 60. From a repressilator-based circadian clock mechanism to an external coincidence model responsible for photoperiod and temperature control of plant architecture in Arabodopsis thaliana.
    Yamashino T
    Biosci Biotechnol Biochem; 2013; 77(1):10-6. PubMed ID: 23291766
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.