These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 26124436)
41. Nanotubes connecting B lymphocytes: High impact of differentiation-dependent lipid composition on their growth and mechanics. Tóth EA; Oszvald Á; Péter M; Balogh G; Osteikoetxea-Molnár A; Bozó T; Szabó-Meleg E; Nyitrai M; Derényi I; Kellermayer M; Yamaji T; Hanada K; Vígh L; Matkó J Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Sep; 1862(9):991-1000. PubMed ID: 28645851 [TBL] [Abstract][Full Text] [Related]
42. Reverse cholesterol transport is regulated by varying fatty acyl chain saturation and sphingomyelin content in reconstituted high-density lipoproteins. Marmillot P; Patel S; Lakshman MR Metabolism; 2007 Feb; 56(2):251-9. PubMed ID: 17224341 [TBL] [Abstract][Full Text] [Related]
43. Effects of chemical modification of sphingomyelin ammonium group on formation of liquid-ordered phase. Goretta SA; Kinoshita M; Mori S; Tsuchikawa H; Matsumori N; Murata M Bioorg Med Chem; 2012 Jul; 20(13):4012-9. PubMed ID: 22672982 [TBL] [Abstract][Full Text] [Related]
44. Imaging local sphingomyelin-rich domains in the plasma membrane using specific probes and advanced microscopy. Abe M; Kobayashi T Biochim Biophys Acta; 2014 May; 1841(5):720-6. PubMed ID: 23860017 [TBL] [Abstract][Full Text] [Related]
45. Annexins as organizers of cholesterol- and sphingomyelin-enriched membrane microdomains in Niemann-Pick type C disease. Domon M; Nasir MN; Matar G; Pikula S; Besson F; Bandorowicz-Pikula J Cell Mol Life Sci; 2012 Jun; 69(11):1773-85. PubMed ID: 22159585 [TBL] [Abstract][Full Text] [Related]
46. Content and structure of ceramide and sphingomyelin and sphingomyelinase activity in mouse hepatoma-22. Rylova SN; Somova OG; Zubova ES; Dudnik LB; Kogtev LS; Kozlov AM; Alesenko AV; Dyatlovitskaya EV Biochemistry (Mosc); 1999 Apr; 64(4):437-41. PubMed ID: 10231598 [TBL] [Abstract][Full Text] [Related]
47. Structure-function analysis of Lyn kinase association with lipid rafts and initiation of early signaling events after Fcepsilon receptor I aggregation. Kovárová M; Tolar P; Arudchandran R; Dráberová L; Rivera J; Dráber P Mol Cell Biol; 2001 Dec; 21(24):8318-28. PubMed ID: 11713268 [TBL] [Abstract][Full Text] [Related]
48. Induction of an altered lipid phenotype by two cancer promoting treatments in rat liver. Riedel S; Abel S; Swanevelder S; Gelderblom WC Food Chem Toxicol; 2015 Apr; 78():96-104. PubMed ID: 25656646 [TBL] [Abstract][Full Text] [Related]
49. Evidence for the role of lipid rafts and sphingomyelin in Ca2+-gating of Transient Receptor Potential channels in trigeminal sensory neurons and peripheral nerve terminals. Sághy É; Szőke É; Payrits M; Helyes Z; Börzsei R; Erostyák J; Jánosi TZ; Sétáló G; Szolcsányi J Pharmacol Res; 2015 Oct; 100():101-16. PubMed ID: 26238178 [TBL] [Abstract][Full Text] [Related]
50. Role of membrane sphingomyelin and ceramide in platform formation for Fas-mediated apoptosis. Miyaji M; Jin ZX; Yamaoka S; Amakawa R; Fukuhara S; Sato SB; Kobayashi T; Domae N; Mimori T; Bloom ET; Okazaki T; Umehara H J Exp Med; 2005 Jul; 202(2):249-59. PubMed ID: 16009715 [TBL] [Abstract][Full Text] [Related]
51. Fas/CD95 down-regulation in lymphoma cells through acquired alkyllysophospholipid resistance: partial role of associated sphingomyelin deficiency. van Blitterswijk WJ; Klarenbeek JB; van der Luit AH; Alderliesten MC; van Lummel M; Verheij M Biochem J; 2009 Dec; 425(1):225-34. PubMed ID: 19824885 [TBL] [Abstract][Full Text] [Related]
52. The role of intranuclear lipids. Albi E; Viola Magni MP Biol Cell; 2004 Oct; 96(8):657-67. PubMed ID: 15519699 [TBL] [Abstract][Full Text] [Related]
53. Depletion of the lipid raft constituents, sphingomyelin and ganglioside, decreases serotonin binding at human 5-HT7(a) receptors in HeLa cells. Sjögren B; Svenningsson P Acta Physiol (Oxf); 2007 May; 190(1):47-53. PubMed ID: 17428232 [TBL] [Abstract][Full Text] [Related]
54. An adult case of adrenoleukodystrophy with features of olivo-ponto-cerebellar atrophy: II. Lipid biochemical studies. Taketomi T; Hara A; Kitazawa N; Takada K; Nakamura H Jpn J Exp Med; 1987 Feb; 57(1):59-70. PubMed ID: 3476777 [TBL] [Abstract][Full Text] [Related]
55. Transbilayer asymmetry and sphingomyelin composition modulate the preferential membrane partitioning of the nicotinic acetylcholine receptor in Lo domains. Perillo VL; Peñalva DA; Vitale AJ; Barrantes FJ; Antollini SS Arch Biochem Biophys; 2016 Feb; 591():76-86. PubMed ID: 26702544 [TBL] [Abstract][Full Text] [Related]
56. Sphingomyelins of rat liver: biliary enrichment with molecular species containing 16:0 fatty acids as compared to canalicular-enriched plasma membranes. Nibbering CP; Carey MC J Membr Biol; 1999 Jan; 167(2):165-71. PubMed ID: 9916147 [TBL] [Abstract][Full Text] [Related]
57. Photoactivable sphingosine as a tool to study membrane microenvironments in cultured cells. Aureli M; Prioni S; Mauri L; Loberto N; Casellato R; Ciampa MG; Chigorno V; Prinetti A; Sonnino S J Lipid Res; 2010 Apr; 51(4):798-808. PubMed ID: 19820263 [TBL] [Abstract][Full Text] [Related]
58. Why high cholesterol levels help hematological malignancies: role of nuclear lipid microdomains. Codini M; Cataldi S; Lazzarini A; Tasegian A; Ceccarini MR; Floridi A; Lazzarini R; Ambesi-Impiombato FS; Curcio F; Beccari T; Albi E Lipids Health Dis; 2016 Jan; 15():4. PubMed ID: 26754536 [TBL] [Abstract][Full Text] [Related]
59. Change in contents of biologically active sphingolipids modulating cell growth and survival in hepatoma 27 compared to rat liver. Kandyba AG; Kobliakov VA; Somova OG; Dyatlovitskaya EV Biochemistry (Mosc); 2004 May; 69(5):497-500. PubMed ID: 15193122 [TBL] [Abstract][Full Text] [Related]
60. Lipid microdomains in cell nucleus. Cascianelli G; Villani M; Tosti M; Marini F; Bartoccini E; Magni MV; Albi E Mol Biol Cell; 2008 Dec; 19(12):5289-95. PubMed ID: 18923143 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]