These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 26124702)

  • 1. Brain-to-text: decoding spoken phrases from phone representations in the brain.
    Herff C; Heger D; de Pesters A; Telaar D; Brunner P; Schalk G; Schultz T
    Front Neurosci; 2015; 9():217. PubMed ID: 26124702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoding spoken phonemes from sensorimotor cortex with high-density ECoG grids.
    Ramsey NF; Salari E; Aarnoutse EJ; Vansteensel MJ; Bleichner MG; Freudenburg ZV
    Neuroimage; 2018 Oct; 180(Pt A):301-311. PubMed ID: 28993231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Potential for a Speech Brain-Computer Interface Using Chronic Electrocorticography.
    Rabbani Q; Milsap G; Crone NE
    Neurotherapeutics; 2019 Jan; 16(1):144-165. PubMed ID: 30617653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain2Char: a deep architecture for decoding text from brain recordings.
    Sun P; Anumanchipalli GK; Chang EF
    J Neural Eng; 2020 Dec; 17(6):. PubMed ID: 33142282
    [No Abstract]   [Full Text] [Related]  

  • 5. Spatiotemporal target selection for intracranial neural decoding of abstract and concrete semantics.
    Nagata K; Kunii N; Shimada S; Fujitani S; Takasago M; Saito N
    Cereb Cortex; 2022 Dec; 32(24):5544-5554. PubMed ID: 35169837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine translation of cortical activity to text with an encoder-decoder framework.
    Makin JG; Moses DA; Chang EF
    Nat Neurosci; 2020 Apr; 23(4):575-582. PubMed ID: 32231340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding Imagined and Spoken Phrases From Non-invasive Neural (MEG) Signals.
    Dash D; Ferrari P; Wang J
    Front Neurosci; 2020; 14():290. PubMed ID: 32317917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The benefit obtained from visually displayed text from an automatic speech recognizer during listening to speech presented in noise.
    Zekveld AA; Kramer SE; Kessens JM; Vlaming MS; Houtgast T
    Ear Hear; 2008 Dec; 29(6):838-52. PubMed ID: 18633325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoding speech using the timing of neural signal modulation.
    Jiang W; Pailla T; Dichter B; Chang EF; Gilja V
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1532-1535. PubMed ID: 28268618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural speech recognition: continuous phoneme decoding using spatiotemporal representations of human cortical activity.
    Moses DA; Mesgarani N; Leonard MK; Chang EF
    J Neural Eng; 2016 Oct; 13(5):056004. PubMed ID: 27484713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic Speech Recognition from Neural Signals: A Focused Review.
    Herff C; Schultz T
    Front Neurosci; 2016; 10():429. PubMed ID: 27729844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain-Computer Interface: Applications to Speech Decoding and Synthesis to Augment Communication.
    Luo S; Rabbani Q; Crone NE
    Neurotherapeutics; 2022 Jan; 19(1):263-273. PubMed ID: 35099768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoding vowels and consonants in spoken and imagined words using electrocorticographic signals in humans.
    Pei X; Barbour DL; Leuthardt EC; Schalk G
    J Neural Eng; 2011 Aug; 8(4):046028. PubMed ID: 21750369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution neural recordings improve the accuracy of speech decoding.
    Duraivel S; Rahimpour S; Chiang CH; Trumpis M; Wang C; Barth K; Harward SC; Lad SP; Friedman AH; Southwell DG; Sinha SR; Viventi J; Cogan GB
    Nat Commun; 2023 Nov; 14(1):6938. PubMed ID: 37932250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalizing neural signal-to-text brain-computer interfaces.
    Sheth J; Tankus A; Tran M; Pouratian N; Fried I; Speier W
    Biomed Phys Eng Express; 2021 Apr; 7(3):. PubMed ID: 33836507
    [No Abstract]   [Full Text] [Related]  

  • 16. Imagined speech can be decoded from low- and cross-frequency intracranial EEG features.
    Proix T; Delgado Saa J; Christen A; Martin S; Pasley BN; Knight RT; Tian X; Poeppel D; Doyle WK; Devinsky O; Arnal LH; Mégevand P; Giraud AL
    Nat Commun; 2022 Jan; 13(1):48. PubMed ID: 35013268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unsupervised Decoding of Long-Term, Naturalistic Human Neural Recordings with Automated Video and Audio Annotations.
    Wang NX; Olson JD; Ojemann JG; Rao RP; Brunton BW
    Front Hum Neurosci; 2016; 10():165. PubMed ID: 27148018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of intracranial recordings to decode human language: Challenges and opportunities.
    Martin S; Millán JDR; Knight RT; Pasley BN
    Brain Lang; 2019 Jun; 193():73-83. PubMed ID: 27377299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Online speech synthesis using a chronically implanted brain-computer interface in an individual with ALS.
    Angrick M; Luo S; Rabbani Q; Candrea DN; Shah S; Milsap GW; Anderson WS; Gordon CR; Rosenblatt KR; Clawson L; Tippett DC; Maragakis N; Tenore FV; Fifer MS; Hermansky H; Ramsey NF; Crone NE
    Sci Rep; 2024 Apr; 14(1):9617. PubMed ID: 38671062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semantic-hierarchical model improves classification of spoken-word evoked electrocorticography.
    Na Y; Choi I; Jang DP; Kang JK; Woo J
    J Neurosci Methods; 2019 Jan; 311():253-258. PubMed ID: 30389490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.