These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 26124864)
1. Hydrogenation of unactivated enamines to tertiary amines: rhodium complexes of fluorinated phosphines give marked improvements in catalytic activity. Tin S; Fanjul T; Clarke ML Beilstein J Org Chem; 2015; 11():622-7. PubMed ID: 26124864 [TBL] [Abstract][Full Text] [Related]
2. Detection and elimination of product inhibition from the asymmetric catalytic hydrogenation of enamines. Hansen KB; Rosner T; Kubryk M; Dormer PG; Armstrong JD Org Lett; 2005 Oct; 7(22):4935-8. PubMed ID: 16235926 [TBL] [Abstract][Full Text] [Related]
3. Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands. Chirik PJ Acc Chem Res; 2015 Jun; 48(6):1687-95. PubMed ID: 26042837 [TBL] [Abstract][Full Text] [Related]
4. Highly efficient Rh(I)-catalyzed asymmetric hydrogenation of enamines using monodente spiro phosphonite ligands. Hou GH; Xie JH; Wang LX; Zhou QL J Am Chem Soc; 2006 Sep; 128(36):11774-5. PubMed ID: 16953614 [TBL] [Abstract][Full Text] [Related]
5. Metal-free catalytic hydrogenation of enamines, imines, and conjugated phosphinoalkenylboranes. Spies P; Schwendemann S; Lange S; Kehr G; Fröhlich R; Erker G Angew Chem Int Ed Engl; 2008; 47(39):7543-6. PubMed ID: 18726976 [No Abstract] [Full Text] [Related]
6. Rhodium-complex-catalyzed asymmetric hydrogenation: transformation of precatalysts into active species. Preetz A; Drexler HJ; Fischer C; Dai Z; Börner A; Baumann W; Spannenberg A; Thede R; Heller D Chemistry; 2008; 14(5):1445-51. PubMed ID: 18034444 [TBL] [Abstract][Full Text] [Related]
7. Remarkably Facile Borane-Promoted, Rhodium-Catalyzed Asymmetric Hydrogenation of Tri- and Tetrasubstituted Alkenes. Shoba VM; Takacs JM J Am Chem Soc; 2017 Apr; 139(16):5740-5743. PubMed ID: 28394591 [TBL] [Abstract][Full Text] [Related]
8. A Stable Site-Isolated Mono(phosphine)-Rhodium Catalyst on a Metal-Organic Layer for Highly Efficient Hydrogenation Reactions. Guo QY; Wang Z; Fan Y; Zheng H; Lin W Angew Chem Int Ed Engl; 2024 Sep; 63(38):e202409387. PubMed ID: 38925605 [TBL] [Abstract][Full Text] [Related]
9. Selective Hydrogenation of Nitriles to Primary Amines by using a Cobalt Phosphine Catalyst. Adam R; Bheeter CB; Cabrero-Antonino JR; Junge K; Jackstell R; Beller M ChemSusChem; 2017 Mar; 10(5):842-846. PubMed ID: 28066996 [TBL] [Abstract][Full Text] [Related]
10. Evaluating the impacts of amino acids in the second and outer coordination spheres of Rh-bis(diphosphine) complexes for CO Walsh AP; Laureanti JA; Katipamula S; Chambers GM; Priyadarshani N; Lense S; Bays JT; Linehan JC; Shaw WJ Faraday Discuss; 2019 Jul; 215(0):123-140. PubMed ID: 30993272 [TBL] [Abstract][Full Text] [Related]
11. Ruthenium/Imidazolylphosphine catalysis: hydrogenation of aliphatic and aromatic nitriles to form amines. Werkmeister S; Junge K; Wendt B; Spannenberg A; Jiao H; Bornschein C; Beller M Chemistry; 2014 Apr; 20(15):4227-31. PubMed ID: 24615766 [TBL] [Abstract][Full Text] [Related]
12. Highly selective hydroaminomethylation of internal alkenes to give linear amines. Ahmed M; Bronger RP; Jackstell R; Kamer PC; van Leeuwen PW; Beller M Chemistry; 2006 Dec; 12(35):8979-88. PubMed ID: 17013965 [TBL] [Abstract][Full Text] [Related]
13. Captured at last: a catalyst-substrate adduct and a Rh-dihydride solvate in the asymmetric hydrogenation by a Rh-monophosphine catalyst. Gridnev ID; Alberico E; Gladiali S Chem Commun (Camb); 2012 Feb; 48(16):2186-8. PubMed ID: 22251950 [TBL] [Abstract][Full Text] [Related]
18. Recent advances in osmium-catalyzed hydrogenation and dehydrogenation reactions. Chelucci G; Baldino S; Baratta W Acc Chem Res; 2015 Feb; 48(2):363-79. PubMed ID: 25650714 [TBL] [Abstract][Full Text] [Related]
19. Iridium(I) complexes with anionic N-heterocyclic carbene ligands as catalysts for the hydrogenation of alkenes in nonpolar media. Kolychev EL; Kronig S; Brandhorst K; Freytag M; Jones PG; Tamm M J Am Chem Soc; 2013 Aug; 135(33):12448-59. PubMed ID: 23883399 [TBL] [Abstract][Full Text] [Related]
20. Chemical optimization of artificial metalloenzymes based on the biotin-avidin technology: (S)-selective and solvent-tolerant hydrogenation catalysts via the introduction of chiral amino acid spacers. Skander M; Malan C; Ivanova A; Ward TR Chem Commun (Camb); 2005 Oct; (38):4815-7. PubMed ID: 16193124 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]