BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 26124872)

  • 1. First principle investigation of the linker length effects on the thermodynamics of divalent pseudorotaxanes.
    Achazi AJ; Mollenhauer D; Paulus B
    Beilstein J Org Chem; 2015; 11():687-92. PubMed ID: 26124872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical and experimental investigation of crown/ammonium complexes in solution.
    Achazi AJ; von Krbek LK; Schalley CA; Paulus B
    J Comput Chem; 2016 Jan; 37(1):18-24. PubMed ID: 25868688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive Benchmark of Association (Free) Energies of Realistic Host-Guest Complexes.
    Sure R; Grimme S
    J Chem Theory Comput; 2015 Aug; 11(8):3785-801. PubMed ID: 26574460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supramolecular binding thermodynamics by dispersion-corrected density functional theory.
    Grimme S
    Chemistry; 2012 Aug; 18(32):9955-64. PubMed ID: 22782805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced free energy of extraction of Eu
    Ali SM
    Dalton Trans; 2017 Aug; 46(33):10886-10898. PubMed ID: 28766636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SAMPL6 host-guest challenge: binding free energies via a multistep approach.
    Eken Y; Patel P; Díaz T; Jones MR; Wilson AK
    J Comput Aided Mol Des; 2018 Oct; 32(10):1097-1115. PubMed ID: 30225724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding free energies in the SAMPL6 octa-acid host-guest challenge calculated with MM and QM methods.
    Caldararu O; Olsson MA; Misini Ignjatović M; Wang M; Ryde U
    J Comput Aided Mol Des; 2018 Oct; 32(10):1027-1046. PubMed ID: 30203229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculation of solvation free energies with DCOSMO-RS.
    Klamt A; Diedenhofen M
    J Phys Chem A; 2015 May; 119(21):5439-45. PubMed ID: 25635509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anchor points for the unified Brønsted acidity scale: the rCCC model for the calculation of standard Gibbs energies of proton solvation in eleven representative liquid media.
    Himmel D; Goll SK; Leito I; Krossing I
    Chemistry; 2011 May; 17(21):5808-26. PubMed ID: 21542031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Theoretical Investigation of the Geometries and Binding Energies of Molecular Tweezer and Clip Host-Guest Systems.
    Parac M; Etinski M; Peric M; Grimme S
    J Chem Theory Comput; 2005 Nov; 1(6):1110-8. PubMed ID: 26631654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculation of the Gibbs free energy of solvation and dissociation of HCl in water via Monte Carlo simulations and continuum solvation models.
    McGrath MJ; Kuo IF; Ngouana W BF; Ghogomu JN; Mundy CJ; Marenich AV; Cramer CJ; Truhlar DG; Siepmann JI
    Phys Chem Chem Phys; 2013 Aug; 15(32):13578-85. PubMed ID: 23831584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of Solvation Free Energies of Ionic Solutes in Neutral Solvents.
    Kröger LC; Müller S; Smirnova I; Leonhard K
    J Phys Chem A; 2020 May; 124(20):4171-4181. PubMed ID: 32336096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting hydration energies for multivalent ions.
    Andersson MP; Stipp SL
    J Comput Chem; 2014 Oct; 35(28):2070-5. PubMed ID: 25212881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chelate cooperativity and spacer length effects on the assembly thermodynamics and kinetics of divalent pseudorotaxanes.
    Jiang W; Nowosinski K; Löw NL; Dzyuba EV; Klautzsch F; Schäfer A; Huuskonen J; Rissanen K; Schalley CA
    J Am Chem Soc; 2012 Jan; 134(3):1860-8. PubMed ID: 22192048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculation of solvent shifts on electronic g-tensors with the conductor-like screening model (COSMO) and its self-consistent generalization to real solvents (direct COSMO-RS).
    Sinnecker S; Rajendran A; Klamt A; Diedenhofen M; Neese F
    J Phys Chem A; 2006 Feb; 110(6):2235-45. PubMed ID: 16466261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy of the microsolvation-continuum approach in computing the pK(a) and the free energies of formation of phosphate species in aqueous solution.
    Tang E; Di Tommaso D; de Leeuw NH
    Phys Chem Chem Phys; 2010 Nov; 12(41):13804-15. PubMed ID: 20862433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density functional theory based study of molecular interactions, recognition, engineering, and quantum transport in π molecular systems.
    Cho Y; Cho WJ; Youn IS; Lee G; Singh NJ; Kim KS
    Acc Chem Res; 2014 Nov; 47(11):3321-30. PubMed ID: 25338296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substituent effects on axle binding in amide pseudorotaxanes: comparison of NMR titration and ITC data with DFT calculations.
    Kaufmann L; Dzyuba EV; Malberg F; Löw NL; Groschke M; Brusilowskij B; Huuskonen J; Rissanen K; Kirchner B; Schalley CA
    Org Biomol Chem; 2012 Aug; 10(30):5954-64. PubMed ID: 22535470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent effects on excitation energies obtained using the state-specific TD-DFT method with a polarizable continuum model based on constrained equilibrium thermodynamics.
    Bi TJ; Xu LK; Wang F; Ming MJ; Li XY
    Phys Chem Chem Phys; 2017 Dec; 19(48):32242-32252. PubMed ID: 29188829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The treatment of solvation by a generalized Born model and a self-consistent charge-density functional theory-based tight-binding method.
    Xie L; Liu H
    J Comput Chem; 2002 Nov; 23(15):1404-15. PubMed ID: 12370943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.