These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 26125019)

  • 1. An Investigation of Bilateral Symmetry During Manual Wheelchair Propulsion.
    Soltau SL; Slowik JS; Requejo PS; Mulroy SJ; Neptune RR
    Front Bioeng Biotechnol; 2015; 3():86. PubMed ID: 26125019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of speed and grade on wheelchair propulsion hand pattern.
    Slowik JS; Requejo PS; Mulroy SJ; Neptune RR
    Clin Biomech (Bristol, Avon); 2015 Nov; 30(9):927-32. PubMed ID: 26228706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Propulsion biomechanics do not differ between athletic and nonathletic manual wheelchair users in their daily wheelchairs.
    Briley SJ; Vegter RJK; Tolfrey VL; Mason BS
    J Biomech; 2020 May; 104():109725. PubMed ID: 32173030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Symmetry of the elbow kinematics during racing wheelchair propulsion.
    Goosey VL; Campbell IG
    Ergonomics; 1998 Dec; 41(12):1810-20. PubMed ID: 9857839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanic evaluation of upper-extremity symmetry during manual wheelchair propulsion over varied terrain.
    Hurd WJ; Morrow MM; Kaufman KR; An KN
    Arch Phys Med Rehabil; 2008 Oct; 89(10):1996-2002. PubMed ID: 18929029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modifications in Wheelchair Propulsion Technique with Speed.
    Russell IM; Raina S; Requejo PS; Wilcox RR; Mulroy S; McNitt-Gray JL
    Front Bioeng Biotechnol; 2015; 3():171. PubMed ID: 26579513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wheelchair propulsion kinematics in beginners and expert users: influence of wheelchair settings.
    Gorce P; Louis N
    Clin Biomech (Bristol, Avon); 2012 Jan; 27(1):7-15. PubMed ID: 21840091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of varying level terrain on wheelchair propulsion biomechanics.
    Hurd WJ; Morrow MM; Kaufman KR; An KN
    Am J Phys Med Rehabil; 2008 Dec; 87(12):984-91. PubMed ID: 18824889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trunk and neck kinematics during overground manual wheelchair propulsion in persons with tetraplegia.
    Julien MC; Morgan K; Stephens CL; Standeven J; Engsberg J
    Disabil Rehabil Assist Technol; 2014 May; 9(3):213-8. PubMed ID: 23548111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and Fabrication of an Instrumented Handrim to Measure the Kinetic and Kinematic Information by the Hand of User for 3D Analysis of Manual Wheelchair Propulsion Dynamics.
    Mallakzadeh M; Akbari H
    J Med Signals Sens; 2014 Oct; 4(4):256-66. PubMed ID: 25426429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scapular kinematics during manual wheelchair propulsion in able-bodied participants.
    Bekker MJ; Vegter RJK; van der Scheer JW; Hartog J; de Groot S; de Vries W; Arnet U; van der Woude LHV; Veeger DHEJ
    Clin Biomech (Bristol, Avon); 2018 May; 54():54-61. PubMed ID: 29554550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinematics and pushrim kinetics in adolescents propelling high-strength lightweight and ultra-lightweight manual wheelchairs.
    Oliveira N; Blochlinger S; Ehrenberg N; Defosse T; Forrest G; Dyson-Hudson T; Barrance P
    Disabil Rehabil Assist Technol; 2019 Apr; 14(3):209-216. PubMed ID: 29271676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stroke pattern and handrim biomechanics for level and uphill wheelchair propulsion at self-selected speeds.
    Richter WM; Rodriguez R; Woods KR; Axelson PW
    Arch Phys Med Rehabil; 2007 Jan; 88(1):81-7. PubMed ID: 17207680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shoulder biomechanics during the push phase of wheelchair propulsion: a multisite study of persons with paraplegia.
    Collinger JL; Boninger ML; Koontz AM; Price R; Sisto SA; Tolerico ML; Cooper RA
    Arch Phys Med Rehabil; 2008 Apr; 89(4):667-76. PubMed ID: 18373997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of kinematics, kinetics, and EMG throughout wheelchair propulsion in able-bodied and persons with paraplegia: an integrative approach.
    Dubowsky SR; Sisto SA; Langrana NA
    J Biomech Eng; 2009 Feb; 131(2):021015. PubMed ID: 19102574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unmatched speed perceptions between overground and treadmill manual wheelchair propulsion in long-term manual wheelchair users.
    Chénier F; Champagne A; Desroches G; Gagnon DH
    Gait Posture; 2018 Mar; 61():398-402. PubMed ID: 29462773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of handrim diameter on manual wheelchair propulsion: mechanical energy and power flow analysis.
    Guo LY; Su FC; An KN
    Clin Biomech (Bristol, Avon); 2006 Feb; 21(2):107-15. PubMed ID: 16226359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship Between Hand Contact Angle and Shoulder Loading During Manual Wheelchair Propulsion by Individuals with Paraplegia.
    Requejo PS; Mulroy SJ; Ruparel P; Hatchett PE; Haubert LL; Eberly VJ; Gronley JK
    Top Spinal Cord Inj Rehabil; 2015; 21(4):313-24. PubMed ID: 26689696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Propulsion patterns and pushrim biomechanics in manual wheelchair propulsion.
    Boninger ML; Souza AL; Cooper RA; Fitzgerald SG; Koontz AM; Fay BT
    Arch Phys Med Rehabil; 2002 May; 83(5):718-23. PubMed ID: 11994814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early motor learning changes in upper-limb dynamics and shoulder complex loading during handrim wheelchair propulsion.
    Vegter RJ; Hartog J; de Groot S; Lamoth CJ; Bekker MJ; van der Scheer JW; van der Woude LH; Veeger DH
    J Neuroeng Rehabil; 2015 Mar; 12():26. PubMed ID: 25889389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.