BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 26125122)

  • 21. Ability of leaf mesophyll to retain potassium correlates with salinity tolerance in wheat and barley.
    Wu H; Shabala L; Barry K; Zhou M; Shabala S
    Physiol Plant; 2013 Dec; 149(4):515-27. PubMed ID: 23611560
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changes in foliar proline concentration of osmotically stressed barley.
    Kocheva KV; Georgiev GI
    Z Naturforsch C J Biosci; 2008; 63(1-2):101-4. PubMed ID: 18386497
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Large-scale expression profiling and physiological characterization of jasmonic acid-mediated adaptation of barley to salinity stress.
    Walia H; Wilson C; Condamine P; Liu X; Ismail AM; Close TJ
    Plant Cell Environ; 2007 Apr; 30(4):410-21. PubMed ID: 17324228
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Study on salt tolerance with YHem1 transgenic canola (Brassica napus).
    Sun XE; Feng XX; Li C; Zhang ZP; Wang LJ
    Physiol Plant; 2015 Jun; 154(2):223-42. PubMed ID: 25220348
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo evidence that Ids3 from Hordeum vulgare encodes a dioxygenase that converts 2'-deoxymugineic acid to mugineic acid in transgenic rice.
    Kobayashi T; Nakanishi H; Takahashi M; Kawasaki S; Nishizawa NK; Mori S
    Planta; 2001 Apr; 212(5-6):864-71. PubMed ID: 11346963
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Salinity stress in roots of contrasting barley genotypes reveals time-distinct and genotype-specific patterns for defined proteins.
    Witzel K; Matros A; Strickert M; Kaspar S; Peukert M; Mühling KH; Börner A; Mock HP
    Mol Plant; 2014 Feb; 7(2):336-55. PubMed ID: 24004485
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic Variation and Alleviation of Salinity Stress in Barley (
    El-Esawi MA; Alaraidh IA; Alsahli AA; Ali HM; Alayafi AA; Witczak J; Ahmad M
    Molecules; 2018 Sep; 23(10):. PubMed ID: 30274189
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Induced activity of adenine phosphoribosyltransferase (APRT) in iron-deficiency barley roots: a possible role for phytosiderophore production.
    Itai R; Suzuki K; Yamaguchi H; Nakanishi H; Nishizawa NK; Yoshimura E; Mori S
    J Exp Bot; 2000 Jul; 51(348):1179-88. PubMed ID: 10937693
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glutamine synthetase and glutamate dehydrogenase contribute differentially to proline accumulation in leaves of wheat (Triticum aestivum) seedlings exposed to different salinity.
    Wang ZQ; Yuan YZ; Ou JQ; Lin QH; Zhang CF
    J Plant Physiol; 2007 Jun; 164(6):695-701. PubMed ID: 16777263
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The root-hairless barley mutant brb used as model for assessment of role of root hairs in iron accumulation.
    Zuchi S; Cesco S; Gottardi S; Pinton R; Römheld V; Astolfi S
    Plant Physiol Biochem; 2011 May; 49(5):506-12. PubMed ID: 21236691
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphoenolpyruvate carboxylase (PEPC) and PEPC-kinase (PEPC-k) isoenzymes in Arabidopsis thaliana: role in control and abiotic stress conditions.
    Feria AB; Bosch N; Sánchez A; Nieto-Ingelmo AI; de la Osa C; Echevarría C; García-Mauriño S; Monreal JA
    Planta; 2016 Oct; 244(4):901-13. PubMed ID: 27306451
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic responses to iron deficiency in roots of Carrizo citrange [Citrus sinensis (L.) Osbeck. x Poncirus trifoliata (L.) Raf].
    Martínez-Cuenca MR; Iglesias DJ; Talón M; Abadía J; López-Millán AF; Primo-Millo E; Legaz F
    Tree Physiol; 2013 Mar; 33(3):320-9. PubMed ID: 23462311
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The combined effect of Cr(III) and NaCl determines changes in metal uptake, nutrient content, and gene expression in quinoa (Chenopodium quinoa Willd.).
    Guarino F; Ruiz KB; Castiglione S; Cicatelli A; Biondi S
    Ecotoxicol Environ Saf; 2020 Apr; 193():110345. PubMed ID: 32092578
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exogenous proline effects on water relations and ions contents in leaves and roots of young olive.
    Ben Ahmed Ch; Magdich S; Ben Rouina B; Sensoy S; Boukhris M; Ben Abdullah F
    Amino Acids; 2011 Feb; 40(2):565-73. PubMed ID: 20617349
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effects of salt stress cause a diversion of basal metabolism in barley roots: possible different roles for glucose-6-phosphate dehydrogenase isoforms.
    Cardi M; Castiglia D; Ferrara M; Guerriero G; Chiurazzi M; Esposito S
    Plant Physiol Biochem; 2015 Jan; 86():44-54. PubMed ID: 25461699
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic changes of iron uptake in N(2)-fixing common bean nodules during iron deficiency.
    Slatni T; Vigani G; Salah IB; Kouas S; Dell'Orto M; Gouia H; Zocchi G; Abdelly C
    Plant Sci; 2011 Aug; 181(2):151-8. PubMed ID: 21683880
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enzymatic activity, gene expression and posttranslational modifications of photosynthetic and non-photosynthetic phosphoenolpyruvate carboxylase in ammonium-stressed sorghum plants.
    Arias-Baldrich C; de la Osa C; Bosch N; Ruiz-Ballesta I; Monreal JA; García-Mauriño S
    J Plant Physiol; 2017 Jul; 214():39-47. PubMed ID: 28431276
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitric oxide regulation of leaf phosphoenolpyruvate carboxylase-kinase activity: implication in sorghum responses to salinity.
    Monreal JA; Arias-Baldrich C; Tossi V; Feria AB; Rubio-Casal A; García-Mata C; Lamattina L; García-Mauriño S
    Planta; 2013 Nov; 238(5):859-69. PubMed ID: 23913013
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The physiological and metabolic changes in sugar beet seedlings under different levels of salt stress.
    Wang Y; Stevanato P; Yu L; Zhao H; Sun X; Sun F; Li J; Geng G
    J Plant Res; 2017 Nov; 130(6):1079-1093. PubMed ID: 28711996
    [TBL] [Abstract][Full Text] [Related]  

  • 40. K+ retention in leaf mesophyll, an overlooked component of salinity tolerance mechanism: a case study for barley.
    Wu H; Zhu M; Shabala L; Zhou M; Shabala S
    J Integr Plant Biol; 2015 Feb; 57(2):171-85. PubMed ID: 25040138
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.