These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 26125347)

  • 1. Beam self-cleanup by use of self-written waveguide generated by photopolymerization.
    Li H; Dong Y; Xu P; Qi Y; Guo C; Sheridan JT
    Opt Lett; 2015 Jul; 40(13):2981-4. PubMed ID: 26125347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quasi-solitonic behavior of self-written waveguides created by photopolymerization.
    Dorkenoo K; Crégut O; Mager L; Gillot F; Carre C; Fort A
    Opt Lett; 2002; 27(20):1782-4. PubMed ID: 18033362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-written waveguides in photopolymer.
    Malallah R; Cassidy D; Muniraj I; Ryle JP; Healy JJ; Sheridan JT
    Appl Opt; 2018 Aug; 57(22):E80-E88. PubMed ID: 30117925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental and theoretical study of the formation process of photopolymer based self-written waveguides.
    Suar M; Melchert O; Rahlves M; Roth B
    Opt Express; 2019 Dec; 27(26):38326-38336. PubMed ID: 31878601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-written waveguides in a dry acrylamide/polyvinyl alcohol photopolymer material.
    Li H; Qi Y; Ryle JP; Sheridan JT
    Appl Opt; 2014 Dec; 53(34):8086-94. PubMed ID: 25607967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical Trajectory Manipulations Using the Self-Written Waveguide Technique.
    Malallah R; Cassidy D; Wan M; Muniraj I; Healy JJ; Sheridan JT
    Polymers (Basel); 2020 Jun; 12(7):. PubMed ID: 32605110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-written waveguide in methylene blue sensitized poly(vinyl alcohol)/acrylamide photopolymer material.
    Jisha CP; Kishore VC; John BM; Kuriakose VC; Porsezian K; Kartha CS
    Appl Opt; 2008 Dec; 47(35):6502-7. PubMed ID: 19079456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A black beam borne by an incandescent field self-traps in a photopolymerizing medium.
    Kasala K; Saravanamuttu K
    J Am Chem Soc; 2012 Aug; 134(34):14195-200. PubMed ID: 22830388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Review of Hologram Storage and Self-Written Waveguides Formation in Photopolymer Media.
    Malallah R; Li H; Kelly DP; Healy JJ; Sheridan JT
    Polymers (Basel); 2017 Aug; 9(8):. PubMed ID: 30971014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of a new photosensitizer with erythrosine B in an AA/PVA-based photopolymer material.
    Qi Y; Li H; Fouassier JP; Lalevée J; Sheridan JT
    Appl Opt; 2014 Feb; 53(6):1052-62. PubMed ID: 24663301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model.
    Gleeson MR; Sheridan JT; Bruder FK; Rölle T; Berneth H; Weiser MS; Fäcke T
    Opt Express; 2011 Dec; 19(27):26325-42. PubMed ID: 22274217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature-compensated fiber-optic 3D shape sensor based on femtosecond laser direct-written Bragg grating waveguides.
    Lee KK; Mariampillai A; Haque M; Standish BA; Yang VX; Herman PR
    Opt Express; 2013 Oct; 21(20):24076-86. PubMed ID: 24104316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coherent beam transformations using multimode waveguides.
    Zhu X; Schülzgen A; Li H; Wei H; Moloney JV; Peyghambarian N
    Opt Express; 2010 Mar; 18(7):7506-20. PubMed ID: 20389773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of the refractive index in photopolymerizable materials for (2+1)D solitary wave guide formation.
    Dorkenoo KD; Gillot F; Crégut O; Sonnefraud Y; Fort A; Leblond H
    Phys Rev Lett; 2004 Oct; 93(14):143905. PubMed ID: 15524795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cladded self-written multimode step-index waveguides using a one-polymer approach.
    Günther A; Petermann AB; Gleissner U; Hanemann T; Reithmeier E; Rahlves M; Meinhardt-Wollweber M; Morgner U; Roth B
    Opt Lett; 2015 Apr; 40(8):1830-3. PubMed ID: 25872085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of Photopolymer Materials for the Fabrication of a Holographic Waveguide.
    Neipp C; Francés J; Martínez FJ; Fernández R; Alvarez ML; Bleda S; Ortuño M; Gallego S
    Polymers (Basel); 2017 Aug; 9(9):. PubMed ID: 30965697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Holographic waveguides in photopolymers.
    Fernández R; Bleda S; Gallego S; Neipp C; Márquez A; Tomita Y; Pascual I; Beléndez A
    Opt Express; 2019 Jan; 27(2):827-840. PubMed ID: 30696163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of reflection gratings recorded in polyvinyl alcohol/acrylamide-based photopolymer.
    Fuentes R; Fernández E; García C; Beléndez A; Pascual I
    Appl Opt; 2009 Dec; 48(34):6553-7. PubMed ID: 19956309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of micrometer-sized polymer elements at the end of optical fibers by free-radical photopolymerization.
    Bachelot R; Ecoffet C; Deloeil D; Royer P; Lougnot DJ
    Appl Opt; 2001 Nov; 40(32):5860-71. PubMed ID: 18364878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly sensitive and spatially resolved polyvinyl alcohol/acrylamide photopolymer for real-time holographic applications.
    Zhu J; Wang G; Hao Y; Xie B; Cheng AY
    Opt Express; 2010 Aug; 18(17):18106-12. PubMed ID: 20721198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.