These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 26125349)

  • 41. Quantifying and optimizing single-molecule switching nanoscopy at high speeds.
    Lin Y; Long JJ; Huang F; Duim WC; Kirschbaum S; Zhang Y; Schroeder LK; Rebane AA; Velasco MG; Virrueta A; Moonan DW; Jiao J; Hernandez SY; Zhang Y; Bewersdorf J
    PLoS One; 2015; 10(5):e0128135. PubMed ID: 26011109
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Compressed sensing based real-time dynamic MRI reconstruction.
    Majumdar A; Ward RK; Aboulnasr T
    IEEE Trans Med Imaging; 2012 Dec; 31(12):2253-66. PubMed ID: 22949054
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Distributed MLEM: an iterative tomographic image reconstruction algorithm for distributed memory architectures.
    Cui J; Pratx G; Meng B; Levin CS
    IEEE Trans Med Imaging; 2013 May; 32(5):957-67. PubMed ID: 23529079
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A computationally efficient method for reconstructing sequences of MR images from undersampled k-space data.
    Zonoobi D; Kassim AA
    Med Image Anal; 2014 Aug; 18(6):857-65. PubMed ID: 24874773
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy.
    Huang X; Fan J; Li L; Liu H; Wu R; Wu Y; Wei L; Mao H; Lal A; Xi P; Tang L; Zhang Y; Liu Y; Tan S; Chen L
    Nat Biotechnol; 2018 Jun; 36(5):451-459. PubMed ID: 29644998
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sparse image reconstruction on the sphere: implications of a new sampling theorem.
    McEwen JD; Puy G; Thiran JP; Vandergheynst P; Van De Ville D; Wiaux Y
    IEEE Trans Image Process; 2013 Jun; 22(6):2275-85. PubMed ID: 23475360
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fast model-based X-ray CT reconstruction using spatially nonhomogeneous ICD optimization.
    Yu Z; Thibault JB; Bouman CA; Sauer KD; Hsieh J
    IEEE Trans Image Process; 2011 Jan; 20(1):161-75. PubMed ID: 20643609
    [TBL] [Abstract][Full Text] [Related]  

  • 48. SIM reconstruction framework for high-speed multi-dimensional super-resolution imaging.
    Zeng H; Liu G; Zhao R
    Opt Express; 2022 Mar; 30(7):10877-10898. PubMed ID: 35473044
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Adaptive multiple-frame image super-resolution based on U-curve.
    Yuan Q; Zhang L; Shen H; Li P
    IEEE Trans Image Process; 2010 Dec; 19(12):3157-70. PubMed ID: 20615814
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quantitative evaluation of software packages for single-molecule localization microscopy.
    Sage D; Kirshner H; Pengo T; Stuurman N; Min J; Manley S; Unser M
    Nat Methods; 2015 Aug; 12(8):717-24. PubMed ID: 26076424
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enhanced super-resolution microscopy by extreme value based emitter recovery.
    Ma H; Jiang W; Xu J; Liu Y
    Sci Rep; 2021 Oct; 11(1):20417. PubMed ID: 34650088
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sparse deconvolution of high-density super-resolution images.
    Hugelier S; de Rooi JJ; Bernex R; Duwé S; Devos O; Sliwa M; Dedecker P; Eilers PH; Ruckebusch C
    Sci Rep; 2016 Feb; 6():21413. PubMed ID: 26912448
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Application of super-resolution reconstruction of sparse representation in mass spectrometry imaging.
    Tang F; Bi Y; He J; Li T; Abliz Z; Wang X
    Rapid Commun Mass Spectrom; 2015 Jun; 29(12):1178-84. PubMed ID: 25981548
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Computational acceleration for MR image reconstruction in partially parallel imaging.
    Ye X; Chen Y; Huang F
    IEEE Trans Med Imaging; 2011 May; 30(5):1055-63. PubMed ID: 20833599
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multi-frame image super resolution based on sparse coding.
    Kato T; Hino H; Murata N
    Neural Netw; 2015 Jun; 66():64-78. PubMed ID: 25805366
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Maximum-entropy three-dimensional reconstruction with deconvolution of the contrast transfer function: a test application with adenovirus.
    Skoglund U; Ofverstedt LG; Burnett RM; Bricogne G
    J Struct Biol; 1996; 117(3):173-88. PubMed ID: 8986647
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High-density 3D single molecular analysis based on compressed sensing.
    Gu L; Sheng Y; Chen Y; Chang H; Zhang Y; Lv P; Ji W; Xu T
    Biophys J; 2014 Jun; 106(11):2443-9. PubMed ID: 24896123
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Fully GPU-Based Ray-Driven Backprojector via a Ray-Culling Scheme with Voxel-Level Parallelization for Cone-Beam CT Reconstruction.
    Park HG; Shin YG; Lee H
    Technol Cancer Res Treat; 2015 Dec; 14(6):709-20. PubMed ID: 24750005
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Efficient L1 regularization-based reconstruction for fluorescent molecular tomography using restarted nonlinear conjugate gradient.
    Shi J; Zhang B; Liu F; Luo J; Bai J
    Opt Lett; 2013 Sep; 38(18):3696-9. PubMed ID: 24104850
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fourier ring correlation as a resolution criterion for super-resolution microscopy.
    Banterle N; Bui KH; Lemke EA; Beck M
    J Struct Biol; 2013 Sep; 183(3):363-367. PubMed ID: 23684965
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.