These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 26125355)

  • 21. Spectral Measurement of the Film-Substrate Index Difference in Proton-Exchanged LiNbO(3) Waveguides.
    El Hadi K; Rastogi V; Shenoy MR; Thyagarajan K; De Micheli M; Ostrowsky DB
    Appl Opt; 1998 Sep; 37(27):6463-7. PubMed ID: 18286153
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low-loss GeO(2) optical waveguide fabrication using low deposition rate rf sputtering.
    Yin ZY; Garside BK
    Appl Opt; 1982 Dec; 21(23):4324-8. PubMed ID: 20401063
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low-loss waveguides on Y-cut thin film lithium niobate: towards acousto-optic applications.
    Cai L; Mahmoud A; Piazza G
    Opt Express; 2019 Apr; 27(7):9794-9802. PubMed ID: 31045128
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thin-film lithium niobate-on-insulator waveguides fabricated on silicon wafer by room-temperature bonding method with silicon nanoadhesive layer.
    Takigawa R; Asano T
    Opt Express; 2018 Sep; 26(19):24413-24421. PubMed ID: 30469560
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lithium niobate ridged waveguides with smooth vertical sidewalls fabricated by an ultra-precision cutting method.
    Takigawa R; Higurashi E; Kawanishi T; Asano T
    Opt Express; 2014 Nov; 22(22):27733-8. PubMed ID: 25401917
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lithium niobate channel waveguide at optical communication wavelength formed by multienergy implantation.
    Lu F; Fu G; Jia C; Wang K; Ma H; Shen D
    Opt Express; 2005 Nov; 13(23):9143-8. PubMed ID: 19503112
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-quality LiTaO(3) integrated-optical waveguides and devices fabricated by the annealed-proton-exchange technique.
    Findakly T; Suchoski P; Leonberger F
    Opt Lett; 1988 Sep; 13(9):797-8. PubMed ID: 19746040
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Annealed proton-exchanged LiNbO(3) waveguides.
    Bortz ML; Fejer MM
    Opt Lett; 1991 Dec; 16(23):1844-6. PubMed ID: 19784157
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dilute-melt, proton-exchange slab waveguides in LiNbO 3 : a new fabrication and characterization method.
    Veng T; Skettrup T
    Appl Opt; 1997 Aug; 36(24):5941-8. PubMed ID: 18259434
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultra-low loss ridge waveguides on lithium niobate via argon ion milling and gas clustered ion beam smoothening.
    Siew SY; Cheung EJH; Liang H; Bettiol A; Toyoda N; Alshehri B; Dogheche E; Danner AJ
    Opt Express; 2018 Feb; 26(4):4421-4430. PubMed ID: 29475292
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proton-exchanged periodically segmented waveguides in LiNbo(3).
    Thyagarajan K; Chien CW; Ramaswamy RV; Kim HS; Cheng HC
    Opt Lett; 1994 Jun; 19(12):880-2. PubMed ID: 19844475
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stable low-loss proton-exchanged LiNbO(3) waveguide devices with no electro-optic degradation.
    Suchoski PG; Findakly TK; Leonberger FJ
    Opt Lett; 1988 Nov; 13(11):1050-2. PubMed ID: 19746122
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-Precision Propagation-Loss Measurement of Single-Mode Optical Waveguides on Lithium Niobate on Insulator.
    Lin J; Zhou J; Wu R; Wang M; Fang Z; Chu W; Zhang J; Qiao L; Cheng Y
    Micromachines (Basel); 2019 Sep; 10(9):. PubMed ID: 31540155
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of near-stoichiometric Ti:LiNbO(3) strip waveguides with varied substrate refractive index in the guiding layer.
    Zhang DL; Zhang P; Zhou HJ; Pun EY
    J Opt Soc Am A Opt Image Sci Vis; 2008 Oct; 25(10):2558-70. PubMed ID: 18830334
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low propagation loss AlGaAs waveguides fabricated with plasma-assisted photoresist reflow.
    Porkolab GA; Apiratikul P; Wang B; Guo SH; Richardson CJ
    Opt Express; 2014 Apr; 22(7):7733-43. PubMed ID: 24718149
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate.
    Korkishko YN; Fedorov VA; De Micheli MP; Baldi P; El Hadi K; Leycuras A
    Appl Opt; 1996 Dec; 35(36):7056-60. PubMed ID: 21151307
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low-loss thin-film LiNbO(3) optical waveguide sputtered onto a SiO(2)/Si substrate.
    Huang CH; Rabson TA
    Opt Lett; 1993 May; 18(10):811-3. PubMed ID: 19802281
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Water vapor effects on optical characteristics in Ti:LiNbO(3) channel waveguides.
    Nozawa T; Noguchi K; Miyazawa H; Kawano K
    Appl Opt; 1991 Mar; 30(9):1085-9. PubMed ID: 20582110
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adiabatically tapered periodic segmentation of channel waveguides for mode-size transformation and fundamental mode excitation.
    Chou MH; Arbore MA; Fejer MM
    Opt Lett; 1996 Jun; 21(11):794-6. PubMed ID: 19876161
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of a rapid thermal annealing system to initiate indiffusion for fabrication of Ti:LiNbO(3) optical channel waveguides.
    Cromer DC; De Brabander GN; Boyd JT; Jackson HE; Sriram S
    Appl Opt; 1989 Jan; 28(1):33-6. PubMed ID: 20548421
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.