These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 26125404)

  • 1. Electroluminescence of GeSn/Ge MQW LEDs on Si substrate.
    Schwartz B; Oehme M; Kostecki K; Widmann D; Gollhofer M; Koerner R; Bechler S; Fischer IA; Wendav T; Kasper E; Schulze J; Kittler M
    Opt Lett; 2015 Jul; 40(13):3209-12. PubMed ID: 26125404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of GeSn based heterostructures: towards optimized group IV MQW LEDs.
    Stange D; von den Driesch N; Rainko D; Schulte-Braucks C; Wirths S; Mussler G; Tiedemann AT; Stoica T; Hartmann JM; Ikonic Z; Mantl S; Grützmacher D; Buca D
    Opt Express; 2016 Jan; 24(2):1358-67. PubMed ID: 26832516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GeSn/Ge multiquantum well photodetectors on Si substrates.
    Oehme M; Widmann D; Kostecki K; Zaumseil P; Schwartz B; Gollhofer M; Koerner R; Bechler S; Kittler M; Kasper E; Schulze J
    Opt Lett; 2014 Aug; 39(16):4711-4. PubMed ID: 25121855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a Si-based lattice-matched room-temperature GeSn/GeSiSn multi-quantum-well mid-infrared laser diode.
    Sun G; Soref RA; Cheng HH
    Opt Express; 2010 Sep; 18(19):19957-65. PubMed ID: 20940887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation investigation of tensile strained GeSn fin photodetector with Si(3)N(4) liner stressor for extension of absorption wavelength.
    Zhang Q; Liu Y; Yan J; Zhang C; Hao Y; Han G
    Opt Express; 2015 Jan; 23(2):739-46. PubMed ID: 25835833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroluminescence from metal-insulator-semiconductor tunneling diodes using compressively strained Ge on Si0.5Ge0.5 virtual substrates.
    Manna S; Aluguri R; Das S; Singha R; Ray SK
    Opt Express; 2013 Nov; 21(23):28219-31. PubMed ID: 24514333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating GeSn photodiode on a 200 mm Ge-on-insulator photonics platform with Ge CMOS devices for advanced OEIC operating at 2 μm band.
    Xu S; Han K; Huang YC; Lee KH; Kang Y; Masudy-Panah S; Wu Y; Lei D; Zhao Y; Wang H; Tan CS; Gong X; Yeo YC
    Opt Express; 2019 Sep; 27(19):26924-26939. PubMed ID: 31674563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-dependent characteristics of GeSn/Ge multiple-quantum-well photoconductors on silicon.
    Lin KC; Huang PR; Li H; Cheng HH; Chang GE
    Opt Lett; 2021 Aug; 46(15):3604-3607. PubMed ID: 34329235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-quality uniaxial In(x)Ga(1-x)N/GaN multiple quantum well (MQW) nanowires (NWs) on Si(111) grown by metal-organic chemical vapor deposition (MOCVD) and light-emitting diode (LED) fabrication.
    Ra YH; Navamathavan R; Park JH; Lee CR
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2111-7. PubMed ID: 23432423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sn-based waveguide p-i-n photodetector with strained GeSn/Ge multiple-quantum-well active layer.
    Huang YH; Chang GE; Li H; Cheng HH
    Opt Lett; 2017 May; 42(9):1652-1655. PubMed ID: 28454127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Material gain engineering in GeSn/Ge quantum wells integrated with an Si platform.
    Mączko HS; Kudrawiec R; Gladysiewicz M
    Sci Rep; 2016 Sep; 6():34082. PubMed ID: 27686056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain-free GeSn nanomembranes enabled by transfer-printing techniques for advanced optoelectronic applications.
    Tai YC; Yeh PL; An S; Cheng HH; Kim M; Chang GE
    Nanotechnology; 2020 Oct; 31(44):445301. PubMed ID: 32674093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photo detection and modulation from 1,550 to 2,000 nm realized by a GeSn/Ge multiple-quantum-well photodiode on a 300-mm Si substrate.
    Zhou H; Xu S; Wu S; Huang YC; Zhao P; Tong J; Son B; Guo X; Zhang D; Gong X; Tan CS
    Opt Express; 2020 Nov; 28(23):34772-34786. PubMed ID: 33182938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of direct bandgap type-I GeSn/GeSn double quantum well with improved carrier confinement.
    Grant PC; Margetis J; Du W; Zhou Y; Dou W; Abernathy G; Kuchuk A; Li B; Tolle J; Liu J; Sun G; Soref RA; Mortazavi M; Yu SQ
    Nanotechnology; 2018 Nov; 29(46):465201. PubMed ID: 30191884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical Analysis of GeSn Quantum Dots for Photodetection Applications.
    Lin PH; Ghosh S; Chang GE
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes.
    Sun X; Liu J; Kimerling LC; Michel J
    Opt Lett; 2009 Apr; 34(8):1198-200. PubMed ID: 19370116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum-confined direct band transitions in tensile strained Ge/SiGe quantum wells on silicon substrates.
    Chen Y; Li C; Lai H; Chen S
    Nanotechnology; 2010 Mar; 21(11):115207. PubMed ID: 20179329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The growth of Ge and direct bandgap Ge
    Gunder C; Maia de Oliveira F; Wangila E; Stanchu H; Zamani-Alavijeh M; Ojo S; Acharya S; Said A; Li C; Mazur YI; Yu SQ; Salamo GJ
    RSC Adv; 2024 Jan; 14(2):1250-1257. PubMed ID: 38174282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infrared tubular microcavity based on rolled-up GeSn/Ge nanomembranes.
    Wu X; Tian Z; Cong H; Wang Y; Edy R; Huang G; Di Z; Xue C; Mei Y
    Nanotechnology; 2018 Oct; 29(42):42LT02. PubMed ID: 30052202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infrared photoresponse of GeSn/n-Ge heterojunctions grown by molecular beam epitaxy.
    Kim S; Bhargava N; Gupta J; Coppinger M; Kolodzey J
    Opt Express; 2014 May; 22(9):11029-34. PubMed ID: 24921801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.