These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 26125524)

  • 1. Modifying Surface Energy of Graphene via Plasma-Based Chemical Functionalization to Tune Thermal and Electrical Transport at Metal Interfaces.
    Foley BM; Hernández SC; Duda JC; Robinson JT; Walton SG; Hopkins PE
    Nano Lett; 2015 Aug; 15(8):4876-82. PubMed ID: 26125524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manipulating thermal conductance at metal-graphene contacts via chemical functionalization.
    Hopkins PE; Baraket M; Barnat EV; Beechem TE; Kearney SP; Duda JC; Robinson JT; Walton SG
    Nano Lett; 2012 Feb; 12(2):590-5. PubMed ID: 22214512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Achieving Huge Thermal Conductance of Metallic Nitride on Graphene Through Enhanced Elastic and Inelastic Phonon Transmission.
    Zheng W; Huang B; Li H; Koh YK
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35487-35494. PubMed ID: 30226044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat conduction across monolayer and few-layer graphenes.
    Koh YK; Bae MH; Cahill DG; Pop E
    Nano Lett; 2010 Nov; 10(11):4363-8. PubMed ID: 20923234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of non-covalent functionalization on the thermal conductance of graphene/organic interfaces.
    Lin S; Buehler MJ
    Nanotechnology; 2013 Apr; 24(16):165702. PubMed ID: 23535514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning thermal contact conductance at graphene-copper interface via surface nanoengineering.
    Hong Y; Li L; Zeng XC; Zhang J
    Nanoscale; 2015 Apr; 7(14):6286-94. PubMed ID: 25784494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultralow Thermal Conductivity and Thermal Diffusivity of Graphene/Metal Heterostructures through Scarcity of Low-Energy Modes in Graphene.
    Zheng W; Huang B; Koh YK
    ACS Appl Mater Interfaces; 2020 Feb; 12(8):9572-9579. PubMed ID: 31909972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring the thermal and electrical transport properties of graphene films by grain size engineering.
    Ma T; Liu Z; Wen J; Gao Y; Ren X; Chen H; Jin C; Ma XL; Xu N; Cheng HM; Ren W
    Nat Commun; 2017 Feb; 8():14486. PubMed ID: 28205514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aryl functionalization as a route to band gap engineering in single layer graphene devices.
    Zhang H; Bekyarova E; Huang JW; Zhao Z; Bao W; Wang F; Haddon RC; Lau CN
    Nano Lett; 2011 Oct; 11(10):4047-51. PubMed ID: 21875083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors influencing thermal transport across graphene/metal interfaces with van der Waals interactions.
    Yang H; Tang Y; Yang P
    Nanoscale; 2019 Aug; 11(30):14155-14163. PubMed ID: 31334741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene Layer Number-Dependent Heat Transport across Nickel/Graphene/Nickel Interfaces.
    Zhou J; Yang K; Yang B; Zhong B; Yao S; Ma Y; Song J; Fan T; Tang D; Zhu J; Liu Y
    ACS Appl Mater Interfaces; 2022 Aug; 14(30):35237-35245. PubMed ID: 35876687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of Polymer Residue Level on the In-Plane Thermal Conductivity of Suspended Large-Area Graphene Sheets.
    Mercado E; Anaya J; Kuball M
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):17910-17919. PubMed ID: 33844921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activating "Invisible" Glue: Using Electron Beam for Enhancement of Interfacial Properties of Graphene-Metal Contact.
    Kim S; Russell M; Kulkarni DD; Henry M; Kim S; Naik RR; Voevodin AA; Jang SS; Tsukruk VV; Fedorov AG
    ACS Nano; 2016 Jan; 10(1):1042-9. PubMed ID: 26741645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variations in the Effective Work Function of Graphene in a Sliding Electrical Contact Interface under Ambient Conditions.
    Huang SD; Chu ED; Wang YH; Liou JW; Wang RS; Woon WY; Chiu HC
    ACS Appl Mater Interfaces; 2022 Apr; ():. PubMed ID: 35438951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multilayer Graphene-Based Thermal Rectifier with Interlayer Gradient Functionalization.
    Wei A; Lahkar S; Li X; Li S; Ye H
    ACS Appl Mater Interfaces; 2019 Dec; 11(48):45180-45188. PubMed ID: 31746588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial Mapping of Thermal Boundary Conductance at Metal-Molybdenum Diselenide Interfaces.
    Brown DB; Shen W; Li X; Xiao K; Geohegan DB; Kumar S
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):14418-14426. PubMed ID: 30896146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geometry and temperature effects of the interfacial thermal conductance in copper- and nickel-graphene nanocomposites.
    Chang SW; Nair AK; Buehler MJ
    J Phys Condens Matter; 2012 Jun; 24(24):245301. PubMed ID: 22611110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hexagonal boron nitride: a promising substrate for graphene with high heat dissipation.
    Zhang Z; Hu S; Chen J; Li B
    Nanotechnology; 2017 Jun; 28(22):225704. PubMed ID: 28492182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-situ measurement of the heat transport in defect- engineered free-standing single-layer graphene.
    Wang H; Kurata K; Fukunaga T; Takamatsu H; Zhang X; Ikuta T; Takahashi K; Nishiyama T; Ago H; Takata Y
    Sci Rep; 2016 Feb; 6():21823. PubMed ID: 26906476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal transfer in graphene-interfaced materials: contact resistance and interface engineering.
    Wang H; Gong J; Pei Y; Xu Z
    ACS Appl Mater Interfaces; 2013 Apr; 5(7):2599-603. PubMed ID: 23465732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.