These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 2612595)

  • 21. Role of inhibition in cortical reorganization of the adult raccoon revealed by microiontophoretic blockade of GABA(A) receptors.
    Tremere L; Hicks TP; Rasmusson DD
    J Neurophysiol; 2001 Jul; 86(1):94-103. PubMed ID: 11431491
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Azimuthal receptive fields are shaped by GABAergic inhibition in the inferior colliculus of the mustache bat.
    Park TJ; Pollak GD
    J Neurophysiol; 1994 Sep; 72(3):1080-102. PubMed ID: 7807197
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat.
    Sillito AM
    J Physiol; 1975 Sep; 250(2):305-29. PubMed ID: 1177144
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gamma-aminobutyric acid and afferent inhibition in the cat and rat ventrobasal thalamus.
    Salt TE
    Neuroscience; 1989; 28(1):17-26. PubMed ID: 2668781
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Benzodiazepine receptor involvement in the control of receptive field size and responsiveness in primary somatosensory cortex.
    Oka JI; Jang EK; Hicks TP
    Brain Res; 1986 Jun; 376(1):194-8. PubMed ID: 3013376
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The influence of GABAergic inhibitory processes on the receptive field structure of X and Y cells in cat dorsal lateral geniculate nucleus (dLGN).
    Sillito AM; Kemp JA
    Brain Res; 1983 Oct; 277(1):63-77. PubMed ID: 6640295
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The contribution of GABA-mediated inhibitory mechanisms to visual response properties of neurons in the kitten's striate cortex.
    Wolf W; Hicks TP; Albus K
    J Neurosci; 1986 Oct; 6(10):2779-95. PubMed ID: 2876063
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Population analysis of single neurons in cat somatosensory cortex.
    Warren RA; Dykes RW
    Somatosens Mot Res; 1992; 9(4):297-312. PubMed ID: 1362827
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Effect of picrotoxin on the receptive fields of neurons of the vibrissal projection area in the cerebral cortex of the cat].
    Aleksandrov AA; Zolotarev VA
    Neirofiziologiia; 1984; 16(6):838-42. PubMed ID: 6097826
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Primary somatosensory cortex modulation of tactile responses in nucleus gracilis cells of rats.
    Malmierca E; Nuñez A
    Eur J Neurosci; 2004 Mar; 19(6):1572-80. PubMed ID: 15066153
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amino acids modify thalamo-cortical response transformation expressed by neurons of the ventrobasal complex.
    Vahle-Hinz C; Hicks TP; Gottschaldt KM
    Brain Res; 1994 Feb; 637(1-2):139-55. PubMed ID: 8180791
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatiotemporal receptive fields of peripheral afferents and cortical area 3b and 1 neurons in the primate somatosensory system.
    Sripati AP; Yoshioka T; Denchev P; Hsiao SS; Johnson KO
    J Neurosci; 2006 Feb; 26(7):2101-14. PubMed ID: 16481443
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibitory modulation of cat somatosensory cortex: a pharmacological study.
    Brailowsky S; Knight RT
    Brain Res; 1984 Nov; 322(2):310-5. PubMed ID: 6509318
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Response properties of slowly and rapidly adapting periodontal mechanosensitive neurones in the primary somatosensory cortex of the cat.
    Nishiura H; Tabata T; Watanabe M
    Arch Oral Biol; 2000 Oct; 45(10):833-42. PubMed ID: 10973557
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibitory contributions to spatiotemporal receptive-field structure and direction selectivity in simple cells of cat area 17.
    Murthy A; Humphrey AL
    J Neurophysiol; 1999 Mar; 81(3):1212-24. PubMed ID: 10085348
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two inhibitory postsynaptic potentials, and GABAA and GABAB receptor-mediated responses in neocortex of rat and cat.
    Connors BW; Malenka RC; Silva LR
    J Physiol; 1988 Dec; 406():443-68. PubMed ID: 2855437
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neurons with unusual response and receptive-field properties in upper laminae of cat SI cortex.
    McKenna TM; Light AR; Whitsel BL
    J Neurophysiol; 1984 May; 51(5):1055-76. PubMed ID: 6726311
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transient and prolonged effects of acetylcholine on responsiveness of cat somatosensory cortical neurons.
    Metherate R; Tremblay N; Dykes RW
    J Neurophysiol; 1988 Apr; 59(4):1253-76. PubMed ID: 2897435
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Excitatory and differential disinhibitory actions of acetylcholine in the lateral geniculate nucleus of the cat.
    Eysel UT; Pape HC; Van Schayck R
    J Physiol; 1986 Jan; 370():233-54. PubMed ID: 2870178
    [TBL] [Abstract][Full Text] [Related]  

  • 40. C-fibres provide a source of masking inhibition to primary somatosensory cortex.
    Calford MB; Tweedale R
    Proc Biol Sci; 1991 Mar; 243(1308):269-75. PubMed ID: 1675804
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.