These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 26125966)

  • 41. Lithium-Ion Insertion Properties of Solution-Exfoliated Germanane.
    Serino AC; Ko JS; Yeung MT; Schwartz JJ; Kang CB; Tolbert SH; Kaner RB; Dunn BS; Weiss PS
    ACS Nano; 2017 Aug; 11(8):7995-8001. PubMed ID: 28763196
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Colloidal tin-germanium nanorods and their Li-ion storage properties.
    Bodnarchuk MI; Kravchyk KV; Krumeich F; Wang S; Kovalenko MV
    ACS Nano; 2014 Mar; 8(3):2360-8. PubMed ID: 24483276
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Si-Based High-Entropy Anode for Lithium-Ion Batteries.
    Lei X; Wang Y; Wang J; Su Y; Ji P; Liu X; Guo S; Wang X; Hu Q; Gu L; Zhang Y; Yang R; Zhou G; Su D
    Small Methods; 2024 Jan; 8(1):e2300754. PubMed ID: 37821416
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes.
    Hu L; Wu H; Hong SS; Cui L; McDonough JR; Bohy S; Cui Y
    Chem Commun (Camb); 2011 Jan; 47(1):367-9. PubMed ID: 20830432
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Copper Silicide Nanowires as Hosts for Amorphous Si Deposition as a Route to Produce High Capacity Lithium-Ion Battery Anodes.
    Stokes K; Geaney H; Sheehan M; Borsa D; Ryan KM
    Nano Lett; 2019 Dec; 19(12):8829-8835. PubMed ID: 31671264
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lithium transport at silicon thin film: barrier for high-rate capability anode.
    Peng B; Cheng F; Tao Z; Chen J
    J Chem Phys; 2010 Jul; 133(3):034701. PubMed ID: 20649344
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Surface-coating regulated lithiation kinetics and degradation in silicon nanowires for lithium ion battery.
    Luo L; Yang H; Yan P; Travis JJ; Lee Y; Liu N; Piper DM; Lee SH; Zhao P; George SM; Zhang JG; Cui Y; Zhang S; Ban C; Wang CM
    ACS Nano; 2015 May; 9(5):5559-66. PubMed ID: 25893684
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A beaded-string silicon anode.
    Sun CF; Karki K; Jia Z; Liao H; Zhang Y; Li T; Qi Y; Cumings J; Rubloff GW; Wang Y
    ACS Nano; 2013 Mar; 7(3):2717-24. PubMed ID: 23402623
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Performance Enhancement of Silicon Alloy-Based Anodes Using Thermally Treated Poly(amide imide) as a Polymer Binder for High Performance Lithium-Ion Batteries.
    Yang HS; Kim SH; Kannan AG; Kim SK; Park C; Kim DW
    Langmuir; 2016 Apr; 32(13):3300-7. PubMed ID: 27008091
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Modified Natural Polysaccharide as a High-Performance Binder for Silicon Anodes in Lithium-Ion Batteries.
    Hu S; Cai Z; Huang T; Zhang H; Yu A
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):4311-4317. PubMed ID: 30600991
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lithiation of silicon nanoparticles confined in carbon nanotubes.
    Yu WJ; Liu C; Hou PX; Zhang L; Shan XY; Li F; Cheng HM
    ACS Nano; 2015 May; 9(5):5063-71. PubMed ID: 25869474
    [TBL] [Abstract][Full Text] [Related]  

  • 52. General approach for high-power li-ion batteries: multiscale lithographic patterning of electrodes.
    Choi S; Kim TH; Lee JI; Kim J; Song HK; Park S
    ChemSusChem; 2014 Dec; 7(12):3483-90. PubMed ID: 25333718
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The impact of erbium incorporation on the structure and photophysics of silicon-germanium nanowires.
    Wu J; Wieligor M; Zerda TW; Coffer JL
    Nanoscale; 2010 Dec; 2(12):2657-67. PubMed ID: 20931125
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Diffusion in Si(x)Ge(1-x)/Si nanowire heterostructures.
    Zhang X; Kulik J; Dickey EC
    J Nanosci Nanotechnol; 2007 Feb; 7(2):717-20. PubMed ID: 17450821
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Highly Adhesive and Soluble Copolyimide Binder: Improving the Long-Term Cycle Life of Silicon Anodes in Lithium-Ion Batteries.
    Choi J; Kim K; Jeong J; Cho KY; Ryou MH; Lee YM
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):14851-8. PubMed ID: 26075943
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Facile synthesis and lithium storage properties of a porous NiSi2/Si/carbon composite anode material for lithium-ion batteries.
    Jia H; Stock C; Kloepsch R; He X; Badillo JP; Fromm O; Vortmann B; Winter M; Placke T
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1508-15. PubMed ID: 25574763
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Economical synthesis and promotion of the electrochemical performance of silicon nanowires as anode material in Li-ion batteries.
    Xiao Y; Hao D; Chen H; Gong Z; Yang Y
    ACS Appl Mater Interfaces; 2013 Mar; 5(5):1681-7. PubMed ID: 23379363
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Graphene-bonded and -encapsulated si nanoparticles for lithium ion battery anodes.
    Wen Y; Zhu Y; Langrock A; Manivannan A; Ehrman SH; Wang C
    Small; 2013 Aug; 9(16):2810-6. PubMed ID: 23440956
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dense Silicon Nanowire Networks Grown on a Stainless-Steel Fiber Cloth: A Flexible and Robust Anode for Lithium-Ion Batteries.
    Imtiaz S; Amiinu IS; Storan D; Kapuria N; Geaney H; Kennedy T; Ryan KM
    Adv Mater; 2021 Dec; 33(52):e2105917. PubMed ID: 34613631
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Li-rich Li-Si alloy as a lithium-containing negative electrode material towards high energy lithium-ion batteries.
    Iwamura S; Nishihara H; Ono Y; Morito H; Yamane H; Nara H; Osaka T; Kyotani T
    Sci Rep; 2015 Jan; 5():8085. PubMed ID: 25626879
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.