These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 2612618)

  • 1. Hexose monophosphate shunt activity in erythrocytes related to cell age.
    Ouwerkerk R; Damen P; de Haan K; Staal GE; Rijksen G
    Eur J Haematol; 1989 Nov; 43(5):441-7. PubMed ID: 2612618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the human-erythrocyte hexose-monophosphate shunt under conditions of oxidative stress. A study using NMR spectroscopy, a kinetic isotope effect, a reconstituted system and computer simulation.
    Thorburn DR; Kuchel PW
    Eur J Biochem; 1985 Jul; 150(2):371-86. PubMed ID: 4018089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyruvate kinase and the "high ATP syndrome".
    Staal GE; Jansen G; Roos D
    J Clin Invest; 1984 Jul; 74(1):231-5. PubMed ID: 6736249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of hexokinase in the regulation of erythrocyte hexose monophosphate pathway under oxidative stress.
    Magnani M; Rossi L; Bianchi M; Serafini G; Stocchi V
    Biochem Biophys Res Commun; 1988 Aug; 155(1):423-8. PubMed ID: 3415698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of hexokinase, pyruvate kinase, and glucose-6-phosphate dehydrogenase during adult and neonatal reticulocyte maturation.
    Jansen G; Koenderman L; Rijksen G; Cats BP; Staal GE
    Am J Hematol; 1985 Nov; 20(3):203-15. PubMed ID: 4061449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human erythrocyte separation according to age on a discontinuous "Percoll" density gradient.
    Salvo G; Caprari P; Samoggia P; Mariani G; Salvati AM
    Clin Chim Acta; 1982 Jul; 122(2):293-300. PubMed ID: 7105414
    [No Abstract]   [Full Text] [Related]  

  • 7. Methylene blue-mediated hexose monophosphate shunt stimulation in human red blood cells in vitro: independence from intracellular oxidative injury.
    Baird JK
    Int J Biochem; 1984; 16(10):1053-8. PubMed ID: 6394402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hexose-monophosphate shunt activity in intact Plasmodium falciparum-infected erythrocytes and in free parasites.
    Atamna H; Pascarmona G; Ginsburg H
    Mol Biochem Parasitol; 1994 Sep; 67(1):79-89. PubMed ID: 7838186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hexose monophosphate shunt metabolism in sheep: comparison of fetal, newborn and adult erythrocytes.
    Noble NA; Kuwashima LH; Davidson WD; Nathanielsz PW; Tanaka KR
    J Dev Physiol; 1981 Dec; 3(6):333-41. PubMed ID: 7347348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiometric assessment of hexose monophosphate shunt capacity in erythrocytes of rhinoceroses.
    Paglia DE; Weber B; Baumgarten I; Harley EH
    Am J Vet Res; 2001 Jul; 62(7):1113-7. PubMed ID: 11453488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular restraint: a new basis for the limitation in response to oxidative stress in human erythrocytes containing low-activity variants of glucose-6-phosphate dehydrogenase.
    Gaetani GD; Parker JC; Kirkman HN
    Proc Natl Acad Sci U S A; 1974 Sep; 71(9):3584-7. PubMed ID: 4154443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the diagnosis of erythrocyte enzyme defects in the presence of high reticulocyte counts.
    Lakomek M; Schröter W; De Maeyer G; Winkler H
    Br J Haematol; 1989 Jul; 72(3):445-51. PubMed ID: 2527553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ageing in vivo and neuraminidase treatment of rabbit erythrocytes: influence on half-life as assessed by 51Cr labelling.
    Gattegno L; Bladier D; Cornillot P
    Hoppe Seylers Z Physiol Chem; 1975 Apr; 356(4):391-7. PubMed ID: 1150154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of hexose monophosphate shunt in young erythrocytes by pyrimidine nucleotides in hereditary pyrimidine 5' nucleotidase deficiency.
    David O; Ramenghi U; Camaschella C; Vota MG; Comino L; Pescarmona GP; Nicola P
    Eur J Haematol; 1991 Jul; 47(1):48-54. PubMed ID: 1868914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of the pentose phosphate shunt by 2,3-diphosphoglycerate in erythrocyte pyruvate kinase deficiency.
    Tomoda A; Lachant NA; Noble NA; Tanaka KR
    Br J Haematol; 1983 Jul; 54(3):475-84. PubMed ID: 6860590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation and rate of the hexose monophosphate shunt in Rana ridibunda erythrocytes.
    Kaloyianni M; Kalomenopoulou M
    Comp Biochem Physiol B; 1990; 95(2):287-94. PubMed ID: 2109668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptation of red cell enzymes and intermediates in metabolic disorders.
    Goebel KM; Goebel FD; Neitzert A; Hausmann L; Schneider J
    Enzyme; 1975; 19(4):201-11. PubMed ID: 123851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between the rate of erythrocyte hexose monophosphate pathway and the glucose 6-phosphate concentration.
    Magnani M; Stocchi V; Fazi A; Dachà M; Fornaini G
    Biochem Biophys Res Commun; 1984 Nov; 125(1):14-7. PubMed ID: 6508792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abnormal erythrocyte metabolism in hepatic disease.
    Smith JR; Kay NE; Gottlieb AJ; Oski FA
    Blood; 1975 Dec; 46(6):955-64. PubMed ID: 1203538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red cell metabolism in the newborn infant. V. Glycolytic intermediates and glycolytic enzymes.
    Oski FA
    Pediatrics; 1969 Jul; 44(1):84-91. PubMed ID: 4307568
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.