These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 26127016)
1. The gene ICS3 from the yeast Saccharomyces cerevisiae is involved in copper homeostasis dependent on extracellular pH. Alesso CA; Discola KF; Monteiro G Fungal Genet Biol; 2015 Sep; 82():43-50. PubMed ID: 26127016 [TBL] [Abstract][Full Text] [Related]
2. Transcriptional remodelling in response to changing copper levels in the Wilson and Menkes disease model of Saccharomyces cerevisiae. Cankorur-Cetinkaya A; Eraslan S; Kirdar B Mol Biosyst; 2013 Nov; 9(11):2889-908. PubMed ID: 24056782 [TBL] [Abstract][Full Text] [Related]
3. Overexpression of ctr1Δ300, a high-affinity copper transporter with deletion of the cytosolic C-terminus in Saccharomyces cerevisiae under excess copper, leads to disruption of transition metal homeostasis and transcriptional remodelling of cellular processes. Schuller A; Auffermann G; Zoschke K; Schmidt U; Ostermann K; Rödel G Yeast; 2013 May; 30(5):201-18. PubMed ID: 23576094 [TBL] [Abstract][Full Text] [Related]
4. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. Kawahata M; Masaki K; Fujii T; Iefuji H FEMS Yeast Res; 2006 Sep; 6(6):924-36. PubMed ID: 16911514 [TBL] [Abstract][Full Text] [Related]
5. Low-affinity copper transporter CTR2 is regulated by copper-sensing transcription factor Mac1p in Saccharomyces cerevisiae. Liu L; Qi J; Yang Z; Peng L; Li C Biochem Biophys Res Commun; 2012 Apr; 420(3):600-4. PubMed ID: 22445756 [TBL] [Abstract][Full Text] [Related]
6. Saccharomyces cerevisiae mutants altered in vacuole function are defective in copper detoxification and iron-responsive gene transcription. Szczypka MS; Zhu Z; Silar P; Thiele DJ Yeast; 1997 Dec; 13(15):1423-35. PubMed ID: 9434348 [TBL] [Abstract][Full Text] [Related]
7. Identification of genes involved in the toxic response of Saccharomyces cerevisiae against iron and copper overload by parallel analysis of deletion mutants. Jo WJ; Loguinov A; Chang M; Wintz H; Nislow C; Arkin AP; Giaever G; Vulpe CD Toxicol Sci; 2008 Jan; 101(1):140-51. PubMed ID: 17785683 [TBL] [Abstract][Full Text] [Related]
8. Copper and iron are the limiting factors for growth of the yeast Saccharomyces cerevisiae in an alkaline environment. Serrano R; Bernal D; Simón E; Ariño J J Biol Chem; 2004 May; 279(19):19698-704. PubMed ID: 14993228 [TBL] [Abstract][Full Text] [Related]
9. Integrative responses to high pH stress in S. cerevisiae. Ariño J OMICS; 2010 Oct; 14(5):517-23. PubMed ID: 20726779 [TBL] [Abstract][Full Text] [Related]
10. Influence of Ogg1 repair on the genetic stability of ccc2 mutant of Saccharomyces cerevisiae chemically challenged with 4-nitroquinoline-1-oxide (4-NQO). da Silva CR; Almeida GS; Caldeira-de-Araújo A; Leitão AC; de Pádula M Mutagenesis; 2016 Jan; 31(1):107-14. PubMed ID: 26275420 [TBL] [Abstract][Full Text] [Related]
11. Role of the yeast multidrug transporter Qdr2 in cation homeostasis and the oxidative stress response. Ríos G; Cabedo M; Rull B; Yenush L; Serrano R; Mulet JM FEMS Yeast Res; 2013 Feb; 13(1):97-106. PubMed ID: 23106982 [TBL] [Abstract][Full Text] [Related]
12. Cadmium regulates copper homoeostasis by inhibiting the activity of Mac1, a transcriptional activator of the copper regulon, in Saccharomyces cerevisiae. Heo DH; Baek IJ; Kang HJ; Kim JH; Chang M; Jeong MY; Kim TH; Choi ID; Yun CW Biochem J; 2010 Oct; 431(2):257-65. PubMed ID: 20670216 [TBL] [Abstract][Full Text] [Related]
13. Dynamic transcriptional response of Saccharomyces cerevisiae cells to copper. Oc S; Eraslan S; Kirdar B Sci Rep; 2020 Oct; 10(1):18487. PubMed ID: 33116258 [TBL] [Abstract][Full Text] [Related]
14. Role of OGG1 and NTG2 in the repair of oxidative DNA damage and mutagenesis induced by hydrogen peroxide in Saccharomyces cerevisiae: relationships with transition metals iron and copper. Melo RG; Leitão AC; Pádula M Yeast; 2004 Sep; 21(12):991-1003. PubMed ID: 15449310 [TBL] [Abstract][Full Text] [Related]
15. Physiological basis of copper tolerance of Saccharomyces cerevisiae nonsense-mediated mRNA decay mutants. Wang X; Okonkwo O; Kebaara BW Yeast; 2013 May; 30(5):179-90. PubMed ID: 23450501 [TBL] [Abstract][Full Text] [Related]
16. SHC1, a high pH inducible gene required for growth at alkaline pH in Saccharomyces cerevisiae. Hong SK; Han SB; Snyder M; Choi EY Biochem Biophys Res Commun; 1999 Feb; 255(1):116-22. PubMed ID: 10082665 [TBL] [Abstract][Full Text] [Related]
17. Insufficiency of copper ion homeostasis causes freeze-thaw injury of yeast cells as revealed by indirect gene expression analysis. Takahashi S; Ando A; Takagi H; Shima J Appl Environ Microbiol; 2009 Nov; 75(21):6706-11. PubMed ID: 19749072 [TBL] [Abstract][Full Text] [Related]