These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 26130007)

  • 1. Preparation of Biotubes with vascular cells component by in vivo incubation using adipose-derived stromal cell-exuding multi-microporous molds.
    Iwai R; Tsujinaka T; Nakayama Y
    J Artif Organs; 2015 Dec; 18(4):322-9. PubMed ID: 26130007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an in vivo tissue-engineered vascular graft with designed wall thickness (biotube type C) based on a novel caged mold.
    Furukoshi M; Moriwaki T; Nakayama Y
    J Artif Organs; 2016 Mar; 19(1):54-61. PubMed ID: 26265146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wall thickness control in biotubes prepared using type-C mold.
    Terazawa T; Nishimura T; Mitani T; Ichii O; Ikeda T; Kosenda K; Tatsumi E; Nakayama Y
    J Artif Organs; 2018 Sep; 21(3):387-391. PubMed ID: 29603026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of xenogeneic decellularized biotubes for off-the-shelf applications.
    Yamanami M; Kanda K; Kawasaki T; Kami D; Watanabe T; Gojo S; Yaku H
    Artif Organs; 2019 Aug; 43(8):773-779. PubMed ID: 30697779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of long in vivo tissue-engineered "Biotube" vascular grafts.
    Nakayama Y; Furukoshi M; Terazawa T; Iwai R
    Biomaterials; 2018 Dec; 185():232-239. PubMed ID: 30248647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An in vivo study on endothelialized vascular grafts produced by autologous biotubes and adipose stem cells (ADSCs).
    Tseng YC; Roan JN; Ho YC; Lin CC; Yeh ML
    J Mater Sci Mater Med; 2017 Sep; 28(10):166. PubMed ID: 28914400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term animal implantation study of biotube-autologous small-caliber vascular graft fabricated by in-body tissue architecture.
    Watanabe T; Kanda K; Yamanami M; Ishibashi-Ueda H; Yaku H; Nakayama Y
    J Biomed Mater Res B Appl Biomater; 2011 Jul; 98(1):120-6. PubMed ID: 21563308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-body optical stimulation formed connective tissue vascular grafts, "biotubes," with many capillaries and elastic fibers.
    Oie T; Yamanami M; Ishibashi-Ueda H; Kanda K; Yaku H; Nakayama Y
    J Artif Organs; 2010 Dec; 13(4):235-40. PubMed ID: 20882309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acceleration of robust "biotube" vascular graft fabrication by in-body tissue architecture technology using a novel eosin Y-releasing mold.
    Nakayama Y; Tsujinaka T
    J Biomed Mater Res B Appl Biomater; 2014 Feb; 102(2):231-8. PubMed ID: 23908123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implantation study of small-caliber "biotube" vascular grafts in a rat model.
    Yamanami M; Ishibashi-Ueda H; Yamamoto A; Iida H; Watanabe T; Kanda K; Yaku H; Nakayama Y
    J Artif Organs; 2013 Mar; 16(1):59-65. PubMed ID: 23192398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autologous small-caliber "biotube" vascular grafts with argatroban loading: a histomorphological examination after implantation to rabbits.
    Watanabe T; Kanda K; Ishibashi-Ueda H; Yaku H; Nakayama Y
    J Biomed Mater Res B Appl Biomater; 2010 Jan; 92(1):236-42. PubMed ID: 19921747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical properties of human autologous tubular connective tissues (human biotubes) obtained from patients undergoing peritoneal dialysis.
    Nakayama Y; Kaneko Y; Takewa Y; Okumura N
    J Biomed Mater Res B Appl Biomater; 2016 Oct; 104(7):1431-7. PubMed ID: 26227350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of somatic stem cells in encapsulation of foreign-body reaction in canine subcutaneous Biotube tissue formation.
    Sato Y; Iwai R; Fukushima M; Nakayama Y
    J Biosci Bioeng; 2021 Nov; 132(5):524-530. PubMed ID: 34420897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shape memory of in-body tissue-engineered Biotube® vascular grafts and the preliminary evaluation in animal implantation experiments.
    Nakayama Y; Furukoshi M; Tatsumi E
    J Cardiovasc Surg (Torino); 2020 Apr; 61(2):208-213. PubMed ID: 31058478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute Phase Pilot Evaluation of Small Diameter Long iBTA Induced Vascular Graft "Biotube" in a Goat Model.
    Higashita R; Nakayama Y; Shiraishi Y; Iwai R; Inoue Y; Yamada A; Terazawa T; Tajikawa T; Miyazaki M; Ohara M; Umeno T; Okamoto K; Oie T; Yambe T; Miyamoto S
    EJVES Vasc Forum; 2022; 54():27-35. PubMed ID: 35128505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carotid Artery Bypass Surgery of In-Body Tissue Architecture-Induced Small-Diameter Biotube in a Goat Model: A Pilot Study.
    Umeno T; Mori K; Iwai R; Kawashima T; Shuto T; Nakashima Y; Tajikawa T; Nakayama Y; Miyamoto S
    Bioengineering (Basel); 2024 Feb; 11(3):. PubMed ID: 38534477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of in-body tissue architecture-induced Biotube vascular grafts for vascular access: Proof of concept in a beagle dog model.
    Furukoshi M; Tatsumi E; Nakayama Y
    J Vasc Access; 2020 May; 21(3):314-321. PubMed ID: 31530219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Initial 3-year results of first human use of an in-body tissue-engineered autologous "Biotube" vascular graft for hemodialysis.
    Nakayama Y; Kaneko Y; Okumura N; Terazawa T
    J Vasc Access; 2020 Jan; 21(1):110-115. PubMed ID: 31169047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pre-implantation evaluation of a small-diameter, long vascular graft (Biotube®) for below-knee bypass surgery in goats.
    Nakayama Y; Iwai R; Terazawa T; Tajikawa T; Umeno T; Kawashima T; Nakashima Y; Shiraishi Y; Yamada A; Higashita R; Miyazaki M; Oie T; Kadota S; Yabuuchi N; Abe F; Funayama-Iwai M; Yambe T; Miyamoto S
    J Biomed Mater Res B Appl Biomater; 2022 Nov; 110(11):2387-2398. PubMed ID: 35561095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of the wing-attached rod for acceleration of "Biotube" vascular grafts fabrication in vivo.
    Sakai O; Kanda K; Ishibashi-Ueda H; Takamizawa K; Ametani A; Yaku H; Nakayama Y
    J Biomed Mater Res B Appl Biomater; 2007 Oct; 83(1):240-7. PubMed ID: 17410569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.