These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 26130082)

  • 1. Multiple Resistance at No Cost: Rifampicin and Streptomycin a Dangerous Liaison in the Spread of Antibiotic Resistance.
    Durão P; Trindade S; Sousa A; Gordo I
    Mol Biol Evol; 2015 Oct; 32(10):2675-80. PubMed ID: 26130082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multidrug-resistant bacteria compensate for the epistasis between resistances.
    Moura de Sousa J; Balbontín R; Durão P; Gordo I
    PLoS Biol; 2017 Apr; 15(4):e2001741. PubMed ID: 28419091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Survival of Rifampin- and Streptomycin-Resistant Escherichia coli Inside Macrophages.
    Durão P; Gülereşi D; Proença J; Gordo I
    Antimicrob Agents Chemother; 2016 Jul; 60(7):4324-32. PubMed ID: 27161646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antibiotic resistance begets more resistance: chromosomal resistance mutations mitigate fitness costs conferred by multi-resistant clinical plasmids.
    Nair RR; Andersson DI; Warsi OM
    Microbiol Spectr; 2024 May; 12(5):e0420623. PubMed ID: 38534122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diminishing returns from beneficial mutations and pervasive epistasis shape the fitness landscape for rifampicin resistance in Pseudomonas aeruginosa.
    MacLean RC; Perron GG; Gardner A
    Genetics; 2010 Dec; 186(4):1345-54. PubMed ID: 20876562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cost of multiple drug resistance in Pseudomonas aeruginosa.
    Ward H; Perron GG; Maclean RC
    J Evol Biol; 2009 May; 22(5):997-1003. PubMed ID: 19298493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Positive epistasis drives the acquisition of multidrug resistance.
    Trindade S; Sousa A; Xavier KB; Dionisio F; Ferreira MG; Gordo I
    PLoS Genet; 2009 Jul; 5(7):e1000578. PubMed ID: 19629166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dominant resistance and negative epistasis can limit the co-selection of de novo resistance mutations and antibiotic resistance genes.
    Porse A; Jahn LJ; Ellabaan MMH; Sommer MOA
    Nat Commun; 2020 Mar; 11(1):1199. PubMed ID: 32139686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epistasis buffers the fitness effects of rifampicin- resistance mutations in Pseudomonas aeruginosa.
    Hall AR; MacLean RC
    Evolution; 2011 Aug; 65(8):2370-9. PubMed ID: 21790582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary Mechanisms Shaping the Maintenance of Antibiotic Resistance.
    Durão P; Balbontín R; Gordo I
    Trends Microbiol; 2018 Aug; 26(8):677-691. PubMed ID: 29439838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of Escherichia coli rifampicin resistance in an antibiotic-free environment during thermal stress.
    Rodríguez-Verdugo A; Gaut BS; Tenaillon O
    BMC Evol Biol; 2013 Feb; 13():50. PubMed ID: 23433244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cost of antibiotic resistance depends on evolutionary history in Escherichia coli.
    Angst DC; Hall AR
    BMC Evol Biol; 2013 Aug; 13():163. PubMed ID: 23914906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic antagonism and hypermutability in Mycobacterium smegmatis.
    Karunakaran P; Davies J
    J Bacteriol; 2000 Jun; 182(12):3331-5. PubMed ID: 10852861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translational errors as the cause of mutations in Escherichia coli.
    Boe L
    Mol Gen Genet; 1992 Feb; 231(3):469-71. PubMed ID: 1538699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictable Phenotypes of Antibiotic Resistance Mutations.
    Knopp M; Andersson DI
    mBio; 2018 May; 9(3):. PubMed ID: 29764951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The effect on sublethal terizidon concentration on the mutation rate for streptomycin- and rifampicin resistance in E. coli].
    Urbanczik R
    Arzneimittelforschung; 1974 May; 24(5):723-5. PubMed ID: 4603888
    [No Abstract]   [Full Text] [Related]  

  • 17. Environmental changes bridge evolutionary valleys.
    Steinberg B; Ostermeier M
    Sci Adv; 2016 Jan; 2(1):e1500921. PubMed ID: 26844293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cost of antibiotic resistance and the geometry of adaptation.
    Sousa A; Magalhães S; Gordo I
    Mol Biol Evol; 2012 May; 29(5):1417-28. PubMed ID: 22144641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased survival of antibiotic-resistant Escherichia coli inside macrophages.
    Miskinyte M; Gordo I
    Antimicrob Agents Chemother; 2013 Jan; 57(1):189-95. PubMed ID: 23089747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptation to the fitness costs of antibiotic resistance in Escherichia coli.
    Schrag SJ; Perrot V; Levin BR
    Proc Biol Sci; 1997 Sep; 264(1386):1287-91. PubMed ID: 9332013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.