These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 26130171)

  • 21. Comparing Waste-to-Energy technologies by applying energy system analysis.
    Münster M; Lund H
    Waste Manag; 2010 Jul; 30(7):1251-63. PubMed ID: 19700298
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gasification: An alternative solution for energy recovery and utilization of vegetable market waste.
    Narnaware SL; Srivastava N; Vahora S
    Waste Manag Res; 2017 Mar; 35(3):276-284. PubMed ID: 27928060
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products.
    Alibardi L; Cossu R
    Waste Manag; 2016 Jan; 47(Pt A):69-77. PubMed ID: 26254676
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biorefinery of Biomass of Agro-Industrial Banana Waste to Obtain High-Value Biopolymers.
    Redondo-Gómez C; Rodríguez Quesada M; Vallejo Astúa S; Murillo Zamora JP; Lopretti M; Vega-Baudrit JR
    Molecules; 2020 Aug; 25(17):. PubMed ID: 32842473
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Generation and collection of restaurant waste: Characterization and evaluation at a case study in Italy.
    Tatàno F; Caramiello C; Paolini T; Tripolone L
    Waste Manag; 2017 Mar; 61():423-442. PubMed ID: 28153407
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Decomposition analysis of the waste generation and management in 30 European countries.
    Korica P; Cirman A; Žgajnar Gotvajn A
    Waste Manag Res; 2016 Nov; 34(11):1109-1116. PubMed ID: 27705881
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.
    Papageorgiou A; Barton JR; Karagiannidis A
    J Environ Manage; 2009 Jul; 90(10):2999-3012. PubMed ID: 19482412
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Processes and prospects on valorizing solid waste for the production of valuable products employing bio-routes: A systematic review.
    Varjani S; Shah AV; Vyas S; Srivastava VK
    Chemosphere; 2021 Nov; 282():130954. PubMed ID: 34082315
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of waste management and energy saving for sustainable green building through analytic hierarchy process and artificial neural network model.
    Lu Y; Ge Y; Zhang G; Abdulwahab A; Salameh AA; Ali HE; Nguyen Le B
    Chemosphere; 2023 Mar; 318():137708. PubMed ID: 36621688
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploitation of Food Industry Waste for High-Value Products.
    Ravindran R; Jaiswal AK
    Trends Biotechnol; 2016 Jan; 34(1):58-69. PubMed ID: 26645658
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative and Qualitative Characterization of Solid Waste Generated in Chitrakoot (India) and Its Management: A Comparative Study of Karwi and Chitrakoot Nagar Panchayat.
    Singh A; Gupta G; Singh A
    J Environ Sci Eng; 2014 Jan; 56(1):115-22. PubMed ID: 26445764
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A review of technologies and performances of thermal treatment systems for energy recovery from waste.
    Lombardi L; Carnevale E; Corti A
    Waste Manag; 2015 Mar; 37():26-44. PubMed ID: 25535103
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alternatives for solid waste management in Isfahan, Iran: a case study.
    Abduli MA; Tavakolli H; Azari A
    Waste Manag Res; 2013 May; 31(5):532-7. PubMed ID: 23444149
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Designing Pay-As-You-Throw schemes in municipal waste management services: A holistic approach.
    Elia V; Gnoni MG; Tornese F
    Waste Manag; 2015 Oct; 44():188-95. PubMed ID: 26235447
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How should greenhouse gas emissions be taken into account in the decision making of municipal solid waste management procurements? A case study of the South Karelia region, Finland.
    Hupponen M; Grönman K; Horttanainen M
    Waste Manag; 2015 Aug; 42():196-207. PubMed ID: 25936556
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Review of Italian experience on automotive shredder residue characterization and management.
    Cossu R; Fiore S; Lai T; Luciano A; Mancini G; Ruffino B; Viotti P; Zanetti MC
    Waste Manag; 2014 Oct; 34(10):1752-62. PubMed ID: 24373677
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Technical potential of electricity production from municipal solid waste disposed in the biggest cities in Brazil: landfill gas, biogas and thermal treatment.
    de Souza SN; Horttanainen M; Antonelli J; Klaus O; Lindino CA; Nogueira CE
    Waste Manag Res; 2014 Oct; 32(10):1015-23. PubMed ID: 25323146
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Life cycle inventory and mass-balance of municipal food waste management systems: Decision support methods beyond the waste hierarchy.
    Edwards J; Othman M; Crossin E; Burn S
    Waste Manag; 2017 Nov; 69():577-591. PubMed ID: 28818397
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ISO 14001 adoption and industrial waste generation: the case of Swedish manufacturing firms.
    Zobel T
    Waste Manag Res; 2015 Feb; 33(2):107-13. PubMed ID: 25649400
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Food waste and the food-energy-water nexus: A review of food waste management alternatives.
    Kibler KM; Reinhart D; Hawkins C; Motlagh AM; Wright J
    Waste Manag; 2018 Apr; 74():52-62. PubMed ID: 29366796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.