BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 26130375)

  • 1. Bone ingrowth around porous-coated acetabular implant: a three-dimensional finite element study using mechanoregulatory algorithm.
    Mukherjee K; Gupta S
    Biomech Model Mechanobiol; 2016 Apr; 15(2):389-403. PubMed ID: 26130375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Implant Surface Texture Design on Peri-Acetabular Bone Ingrowth: A Mechanobiology Based Finite Element Analysis.
    Mukherjee K; Gupta S
    J Biomech Eng; 2017 Mar; 139(3):. PubMed ID: 27925634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined Bone Ingrowth and Remodeling Around Uncemented Acetabular Component: A Multiscale Mechanobiology-Based Finite Element Analysis.
    Mukherjee K; Gupta S
    J Biomech Eng; 2017 Sep; 139(9):. PubMed ID: 28696483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone Ingrowth Around an Uncemented Femoral Implant Using Mechanoregulatory Algorithm: A Multiscale Finite Element Analysis.
    Mathai B; Gupta S
    J Biomech Eng; 2022 Feb; 144(2):. PubMed ID: 34423812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanobiological simulations of peri-acetabular bone ingrowth: a comparative analysis of cell-phenotype specific and phenomenological algorithms.
    Mukherjee K; Gupta S
    Med Biol Eng Comput; 2017 Mar; 55(3):449-465. PubMed ID: 27255452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of bone ingrowth around beaded coated tibial implant for total ankle replacement using mechanoregulatory algorithm.
    Minku ; Mukherjee K; Ghosh R
    Comput Biol Med; 2024 Jun; 175():108551. PubMed ID: 38703546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A macro-micro FE and ANN framework to assess site-specific bone ingrowth around the porous beaded-coated implant: an example with BOX® tibial implant for total ankle replacement.
    Minku ; Ghosh R
    Med Biol Eng Comput; 2024 Jun; 62(6):1639-1654. PubMed ID: 38321323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone ingrowth into a porous coated implant predicted by a mechano-regulatory tissue differentiation algorithm.
    Liu X; Niebur GL
    Biomech Model Mechanobiol; 2008 Aug; 7(4):335-44. PubMed ID: 17701434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone remodelling around cementless composite acetabular components: the effects of implant geometry and implant-bone interfacial conditions.
    Ghosh R; Gupta S
    J Mech Behav Biomed Mater; 2014 Apr; 32():257-269. PubMed ID: 24508712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel adaptive finite element algorithms to predict bone ingrowth in additive manufactured porous implants.
    Cheong VS; Fromme P; Mumith A; Coathup MJ; Blunn GW
    J Mech Behav Biomed Mater; 2018 Nov; 87():230-239. PubMed ID: 30086415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of muscle forces and gait cycle discretization when assessing acetabular cup primary stability: A finite element study.
    Fallahnezhad K; O'Rourke D; Bahl JS; Thewlis D; Taylor M
    Comput Methods Programs Biomed; 2023 Mar; 230():107351. PubMed ID: 36709556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D finite element analysis of porous Ti-based alloy prostheses.
    Mircheski I; Gradišar M
    Comput Methods Biomech Biomed Engin; 2016 Nov; 19(14):1531-40. PubMed ID: 27015664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of functionally graded pores on bone ingrowth in cementless hip prosthesis: a finite element study using mechano-regulatory algorithm.
    Tarlochan F; Mehboob H; Mehboob A; Chang SH
    Biomech Model Mechanobiol; 2018 Jun; 17(3):701-716. PubMed ID: 29168071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ingrowth reduces implant-to-bone relative displacements in canine acetabular prostheses.
    Heiner JP; Manley P; Kohles S; Ulm M; Bogart L; Vanderby R
    J Orthop Res; 1994 Sep; 12(5):657-64. PubMed ID: 7931782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of musculoskeletal loading regimes on numerical evaluations of acetabular component.
    Mukherjee K; Gupta S
    Proc Inst Mech Eng H; 2016 Oct; 230(10):918-29. PubMed ID: 27475907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of primary stability on load transfer and bone remodelling within the uncemented resurfaced femur.
    Pal B; Gupta S
    Proc Inst Mech Eng H; 2011 Jun; 225(6):549-61. PubMed ID: 22034739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of anisotropic bone properties on the biomechanical behavior of the acetabular cup implant: a multiscale finite element study.
    Nguyen VH; Rosi G; Naili S; Michel A; Raffa ML; Bosc R; Meningaud JP; Chappard C; Takano N; Haiat G
    Comput Methods Biomech Biomed Engin; 2017 Sep; 20(12):1312-1325. PubMed ID: 28768422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone remodelling around uncemented metallic and ceramic acetabular components.
    Ghosh R; Mukherjee K; Gupta S
    Proc Inst Mech Eng H; 2013 May; 227(5):490-502. PubMed ID: 23637259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of acetabular resurfacing component material and fixation on the strain distribution in the pelvis.
    Thompson MS; Northmore-Ball MD; Tanner KE
    Proc Inst Mech Eng H; 2002; 216(4):237-45. PubMed ID: 12206520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of Young's modulus of loaded implants on bone remodeling: an experimental and numerical study in the goat knee.
    Stoppie N; Van Oosterwyck H; Jansen J; Wolke J; Wevers M; Naert I
    J Biomed Mater Res A; 2009 Sep; 90(3):792-803. PubMed ID: 18615463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.