BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 26130521)

  • 21. Snake venomics: from the inventory of toxins to biology.
    Calvete JJ
    Toxicon; 2013 Dec; 75():44-62. PubMed ID: 23578513
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Venom of the Brown Treesnake, Boiga irregularis: ontogenetic shifts and taxa-specific toxicity.
    Mackessy SP; Sixberry NM; Heyborne WH; Fritts T
    Toxicon; 2006 Apr; 47(5):537-48. PubMed ID: 16545413
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intraspecies differences in hemostatic venom activities of the South American rattlesnakes, Crotalus durissus cumanensis, as revealed by a range of protease inhibitors.
    Salazar AM; Aguilar I; Guerrero B; Girón ME; Lucena S; Sánchez EE; Rodríguez-Acosta A
    Blood Coagul Fibrinolysis; 2008 Sep; 19(6):525-30. PubMed ID: 18685436
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [In Africa snake venom antivenins in short supply. Fatal risk for foreign tourists?].
    Mebs D
    MMW Fortschr Med; 2002 Sep; 144(37):57. PubMed ID: 12380345
    [No Abstract]   [Full Text] [Related]  

  • 25. Snake venomics of the Central American rattlesnake Crotalus simus and the South American Crotalus durissus complex points to neurotoxicity as an adaptive paedomorphic trend along Crotalus dispersal in South America.
    Calvete JJ; Sanz L; Cid P; de la Torre P; Flores-Díaz M; Dos Santos MC; Borges A; Bremo A; Angulo Y; Lomonte B; Alape-Girón A; Gutiérrez JM
    J Proteome Res; 2010 Jan; 9(1):528-44. PubMed ID: 19863078
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enzymatic properties of venoms from Brazilian scorpions of Tityus genus and the neutralisation potential of therapeutical antivenoms.
    Venancio EJ; Portaro FC; Kuniyoshi AK; Carvalho DC; Pidde-Queiroz G; Tambourgi DV
    Toxicon; 2013 Jul; 69():180-90. PubMed ID: 23506858
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prospects and Challenges of Developing Plant-Derived Snake Antivenin Natural Products: A Focus on West Africa.
    Yusuf AJ; Aleku GA; Bello UR; Liman DU
    ChemMedChem; 2021 Dec; 16(24):3635-3648. PubMed ID: 34585514
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular docking studies and anti-snake venom metalloproteinase activity of Thai mango seed kernel extract.
    Pithayanukul P; Leanpolchareanchai J; Saparpakorn P
    Molecules; 2009 Aug; 14(9):3198-213. PubMed ID: 19783918
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antivenom for snakebite envenoming in Sri Lanka: the need for geographically specific antivenom and improved efficacy.
    Keyler DE; Gawarammana I; Gutiérrez JM; Sellahewa KH; McWhorter K; Malleappah R
    Toxicon; 2013 Jul; 69():90-7. PubMed ID: 23454626
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neo-clerodane diterpenoid, a new metalloprotease snake venom inhibitor from Baccharis trimera (Asteraceae): anti-proteolytic and anti-hemorrhagic properties.
    Januário AH; Santos SL; Marcussi S; Mazzi MV; Pietro RC; Sato DN; Ellena J; Sampaio SV; França SC; Soares AM
    Chem Biol Interact; 2004 Dec; 150(3):243-51. PubMed ID: 15560891
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Snake venoms and their toxins: an Australian perspective.
    Hodgson WC; Wickramaratna JC
    Toxicon; 2006 Dec; 48(7):931-40. PubMed ID: 16920171
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dexamethasone antagonizes the in vivo myotoxic and inflammatory effects of Bothrops venoms.
    Patrão-Neto FC; Tomaz MA; Strauch MA; Monteiro-Machado M; Rocha JR; Borges PA; Calil-Elias S; Melo PA
    Toxicon; 2013 Jul; 69():55-64. PubMed ID: 23416798
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reducing the impact of snakebite envenoming in Latin America and the Caribbean: achievements and challenges ahead.
    Gutiérrez JM
    Trans R Soc Trop Med Hyg; 2014 Sep; 108(9):530-7. PubMed ID: 25096295
    [TBL] [Abstract][Full Text] [Related]  

  • 34. When snakes bite: the management of North American Crotalinae snake envenomation.
    Ashton J; Baker SN; Weant KA
    Adv Emerg Nurs J; 2011; 33(1):15-22. PubMed ID: 21317694
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anti-Metalloproteases: Production and Characterization of Polyclonal IgG Anti-F2 Fraction Antibodies Purified from the Venom of the Snake
    Godoi KS; Guidolin FR; Portaro FCV; Spencer PJ; da Silva WD
    Toxins (Basel); 2023 Apr; 15(4):. PubMed ID: 37104202
    [No Abstract]   [Full Text] [Related]  

  • 36. Detection of venom-antivenom (VAV) immunocomplexes in vitro as a measure of antivenom efficacy.
    O'Leary MA; Isbister GK
    Toxicon; 2014 Jan; 77():125-32. PubMed ID: 24252422
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacterial expression of a snake venom metalloproteinase inhibitory protein from the North American opossum (D.virginiana).
    Werner RM; Miling LM; Elliott BM; Hawes MR; Wickens JM; Webber DE
    Toxicon; 2021 Apr; 194():1-10. PubMed ID: 33581173
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The composition, biochemical properties and toxicity of snake venoms].
    Całkosiński I; Seweryn E; Zasadowski A; Małolepsza-Jarmołowska K; Dzierzba K; Bronowicka-Szydełko A; Mierzchała M; Ceremuga I; Rosińczuk-Tonderys J; Dobrzyński M; Gamian A
    Postepy Hig Med Dosw (Online); 2010 May; 64():262-72. PubMed ID: 20558864
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Toxicologic information resources for reptile envenomations.
    McNally J; Boesen K; Boyer L
    Vet Clin North Am Exot Anim Pract; 2008 May; 11(2):389-401, viii. PubMed ID: 18406394
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Confronting the neglected problem of snake bite envenoming: the need for a global partnership.
    Gutiérrez JM; Theakston RD; Warrell DA
    PLoS Med; 2006 Jun; 3(6):e150. PubMed ID: 16729843
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.