These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 26130577)

  • 1. A DNA shape-based regulatory score improves position-weight matrix-based recognition of transcription factor binding sites.
    Yang J; Ramsey SA
    Bioinformatics; 2015 Nov; 31(21):3445-50. PubMed ID: 26130577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcription Factor Information System (TFIS): A Tool for Detection of Transcription Factor Binding Sites.
    Narad P; Kumar A; Chakraborty A; Patni P; Sengupta A; Wadhwa G; Upadhyaya KC
    Interdiscip Sci; 2017 Sep; 9(3):378-391. PubMed ID: 27052996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of clusters of transcription factor binding sites in relationship to human promoter, CpG islands and gene expression.
    Murakami K; Kojima T; Sakaki Y
    BMC Genomics; 2004 Feb; 5(1):16. PubMed ID: 15053842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A general pairwise interaction model provides an accurate description of in vivo transcription factor binding sites.
    Santolini M; Mora T; Hakim V
    PLoS One; 2014; 9(6):e99015. PubMed ID: 24926895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EMQIT: a machine learning approach for energy based PWM matrix quality improvement.
    Smolinska K; Pacholczyk M
    Biol Direct; 2017 Aug; 12(1):17. PubMed ID: 28764727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel method for improved accuracy of transcription factor binding site prediction.
    Khamis AM; Motwalli O; Oliva R; Jankovic BR; Medvedeva YA; Ashoor H; Essack M; Gao X; Bajic VB
    Nucleic Acids Res; 2018 Jul; 46(12):e72. PubMed ID: 29617876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Logo2PWM: a tool to convert sequence logo to position weight matrix.
    Gao Z; Liu L; Ruan J
    BMC Genomics; 2017 Oct; 18(Suppl 6):709. PubMed ID: 28984206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tree-based position weight matrix approach to model transcription factor binding site profiles.
    Bi Y; Kim H; Gupta R; Davuluri RV
    PLoS One; 2011; 6(9):e24210. PubMed ID: 21912677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring intra-motif dependencies of DNA binding sites from ChIP-seq data.
    Eggeling R; Roos T; Myllymäki P; Grosse I
    BMC Bioinformatics; 2015 Nov; 16():375. PubMed ID: 26552868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dinucleotide weight matrices for predicting transcription factor binding sites: generalizing the position weight matrix.
    Siddharthan R
    PLoS One; 2010 Mar; 5(3):e9722. PubMed ID: 20339533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing coverage of transcription factor position weight matrices through domain-level homology.
    Bernard B; Thorsson V; Rovira H; Shmulevich I
    PLoS One; 2012; 7(8):e42779. PubMed ID: 22952610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative modeling of transcription factor binding specificities using DNA shape.
    Zhou T; Shen N; Yang L; Abe N; Horton J; Mann RS; Bussemaker HJ; Gordân R; Rohs R
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4654-9. PubMed ID: 25775564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reliable scaling of position weight matrices for binding strength comparisons between transcription factors.
    Ma X; Ezer D; Navarro C; Adryan B
    BMC Bioinformatics; 2015 Aug; 16():265. PubMed ID: 26289072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimized position weight matrices in prediction of novel putative binding sites for transcription factors in the Drosophila melanogaster genome.
    Morozov VY; Ioshikhes IP
    PLoS One; 2013; 8(8):e68712. PubMed ID: 23936309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Transcription Factor Binding Sites and Their Cognate Transcription Factors Using Gene Expression Data.
    Yu CP; Li WH
    Methods Mol Biol; 2017; 1629():271-282. PubMed ID: 28623591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing the GATA-3 position weight matrix to improve the identification of novel binding sites.
    Nandi S; Ioshikhes I
    BMC Genomics; 2012 Aug; 13():416. PubMed ID: 22913572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PWMScan: a fast tool for scanning entire genomes with a position-specific weight matrix.
    Ambrosini G; Groux R; Bucher P
    Bioinformatics; 2018 Jul; 34(14):2483-2484. PubMed ID: 29514181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. STOP: searching for transcription factor motifs using gene expression.
    Hertzberg L; Izraeli S; Domany E
    Bioinformatics; 2007 Jul; 23(14):1737-43. PubMed ID: 17488754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bayesian search for transcriptional motifs.
    Miller AK; Print CG; Nielsen PM; Crampin EJ
    PLoS One; 2010 Nov; 5(11):e13897. PubMed ID: 21124986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.