These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 26131055)

  • 1. Roles of sigma-1 receptors in Alzheimer's disease.
    Jin JL; Fang M; Zhao YX; Liu XY
    Int J Clin Exp Med; 2015; 8(4):4808-20. PubMed ID: 26131055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving Alzheimer's Disease-Related Cognitive Deficits with sigma1 Receptor Agonists.
    Maurice T
    Drug News Perspect; 2002 Dec; 15(10):617-625. PubMed ID: 12677246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The emerging role of the sigma-1 receptor in autophagy: hand-in-hand targets for the treatment of Alzheimer's.
    Prasanth MI; Malar DS; Tencomnao T; Brimson JM
    Expert Opin Ther Targets; 2021 May; 25(5):401-414. PubMed ID: 34110944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alzheimer's Disease is Driven by Intraneuronally Retained Beta-Amyloid Produced in the AD-Specific, βAPP-Independent Pathway: Current Perspective and Experimental Models for Tomorrow.
    Volloch V; Olsen B; Rits S
    Ann Integr Mol Med; 2020; 2(1):90-114. PubMed ID: 32617536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dementia of Alzheimer's disease and other neurodegenerative disorders--memantine, a new hope.
    Sonkusare SK; Kaul CL; Ramarao P
    Pharmacol Res; 2005 Jan; 51(1):1-17. PubMed ID: 15519530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sigma-1 (σ₁) receptor deficiency reduces β-amyloid(25-35)-induced hippocampal neuronal cell death and cognitive deficits through suppressing phosphorylation of the NMDA receptor NR2B.
    Yin J; Sha S; Chen T; Wang C; Hong J; Jie P; Zhou R; Li L; Sokabe M; Chen L
    Neuropharmacology; 2015 Feb; 89():215-24. PubMed ID: 25286118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sigma-2 Receptor as a Potential Drug Target.
    Chen AF; Ma WH; Xie XY; Huang YS
    Curr Med Chem; 2021; 28(21):4172-4189. PubMed ID: 32881653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of Oxidative Stress and Synapse Dysfunction in the Pathogenesis of Alzheimer's Disease: Understanding the Therapeutics Strategies.
    Kamat PK; Kalani A; Rai S; Swarnkar S; Tota S; Nath C; Tyagi N
    Mol Neurobiol; 2016 Jan; 53(1):648-661. PubMed ID: 25511446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies.
    Chen Z; Zhong C
    Prog Neurobiol; 2013 Sep; 108():21-43. PubMed ID: 23850509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of σ
    Maurice T; Goguadze N
    Adv Exp Med Biol; 2017; 964():213-233. PubMed ID: 28315274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of Lysosome and Sigma Receptors to Neuroprotective Effects of Memantine Against Beta-Amyloid in the SH-SY5Y Cells.
    Keshavarz M; Farrokhi MR; Amirinezhad Fard E; Mehdipour M
    Adv Pharm Bull; 2020 Jul; 10(3):452-457. PubMed ID: 32665905
    [No Abstract]   [Full Text] [Related]  

  • 12. NMDA neurotransmission dysfunction in mild cognitive impairment and Alzheimer's disease.
    Lin CH; Huang YJ; Lin CJ; Lane HY; Tsai GE
    Curr Pharm Des; 2014; 20(32):5169-79. PubMed ID: 24410566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paradigm shift in NMDA receptor antagonist drug development: molecular mechanism of uncompetitive inhibition by memantine in the treatment of Alzheimer's disease and other neurologic disorders.
    Lipton SA
    J Alzheimers Dis; 2004 Dec; 6(6 Suppl):S61-74. PubMed ID: 15665416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alzheimer's disease.
    De-Paula VJ; Radanovic M; Diniz BS; Forlenza OV
    Subcell Biochem; 2012; 65():329-52. PubMed ID: 23225010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Therapeutic Strategies Targeting Amyloid-β in Alzheimer's Disease.
    Pinheiro L; Faustino C
    Curr Alzheimer Res; 2019; 16(5):418-452. PubMed ID: 30907320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Anti-amnesic effects of sigma (sigma)-receptor agonists].
    Matsuno K
    Nihon Yakurigaku Zasshi; 1999 Jul; 114(1):25-33. PubMed ID: 10562962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug candidates in clinical trials for Alzheimer's disease.
    Hung SY; Fu WM
    J Biomed Sci; 2017 Jul; 24(1):47. PubMed ID: 28720101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The contribution of neuroinflammation to amyloid toxicity in Alzheimer's disease.
    Minter MR; Taylor JM; Crack PJ
    J Neurochem; 2016 Feb; 136(3):457-74. PubMed ID: 26509334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-dependent effect of oligomeric amyloid-β (1-42)-induced hippocampal neurodegeneration in rat model of Alzheimer's disease.
    Karthick C; Nithiyanandan S; Essa MM; Guillemin GJ; Jayachandran SK; Anusuyadevi M
    Neurol Res; 2019 Feb; 41(2):139-150. PubMed ID: 30453864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane lipid modifications and therapeutic effects mediated by hydroxydocosahexaenoic acid on Alzheimer's disease.
    Torres M; Price SL; Fiol-Deroque MA; Marcilla-Etxenike A; Ahyayauch H; Barceló-Coblijn G; Terés S; Katsouri L; Ordinas M; López DJ; Ibarguren M; Goñi FM; Busquets X; Vitorica J; Sastre M; Escribá PV
    Biochim Biophys Acta; 2014 Jun; 1838(6):1680-92. PubMed ID: 24374316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.