These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 26131313)

  • 21. RNA biology of disease-associated microsatellite repeat expansions.
    Rohilla KJ; Gagnon KT
    Acta Neuropathol Commun; 2017 Aug; 5(1):63. PubMed ID: 28851463
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insights into the pathogenic mechanisms of Chromosome 9 open reading frame 72 (C9orf72) repeat expansions.
    Todd TW; Petrucelli L
    J Neurochem; 2016 Aug; 138 Suppl 1():145-62. PubMed ID: 27016280
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CGG-repeat dynamics and
    Zhou Y; Kumari D; Sciascia N; Usdin K
    Mol Autism; 2016; 7():42. PubMed ID: 27713816
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unstable repeat expansion in major psychiatric disorders: two decades on, is dynamic DNA back on the menu?
    Vincent JB
    Psychiatr Genet; 2016 Aug; 26(4):156-65. PubMed ID: 27270050
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Timing of Expansion of Fragile X Premutation Alleles During Intergenerational Transmission in a Mouse Model of the Fragile X-Related Disorders.
    Zhao XN; Usdin K
    Front Genet; 2018; 9():314. PubMed ID: 30147707
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Triplet repeat expansion in neuromuscular disease.
    Lieberman AP; Fischbeck KH
    Muscle Nerve; 2000 Jun; 23(6):843-50. PubMed ID: 10842259
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intron retention induced by microsatellite expansions as a disease biomarker.
    Sznajder ŁJ; Thomas JD; Carrell EM; Reid T; McFarland KN; Cleary JD; Oliveira R; Nutter CA; Bhatt K; Sobczak K; Ashizawa T; Thornton CA; Ranum LPW; Swanson MS
    Proc Natl Acad Sci U S A; 2018 Apr; 115(16):4234-4239. PubMed ID: 29610297
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The GAA triplet-repeat sequence in Friedreich ataxia shows a high level of somatic instability in vivo, with a significant predilection for large contractions.
    Sharma R; Bhatti S; Gomez M; Clark RM; Murray C; Ashizawa T; Bidichandani SI
    Hum Mol Genet; 2002 Sep; 11(18):2175-87. PubMed ID: 12189170
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Age-, tissue- and length-dependent bidirectional somatic CAG•CTG repeat instability in an allelic series of R6/2 Huntington disease mice.
    Larson E; Fyfe I; Morton AJ; Monckton DG
    Neurobiol Dis; 2015 Apr; 76():98-111. PubMed ID: 25662336
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Genomic instability and neurodegenerative disease].
    Miki T; Yamagata H
    Rinsho Byori; 1999 Jan; 47(1):37-45. PubMed ID: 10067364
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single-cell analysis of unstable genes.
    Daniels R; Holding C; Kontogianni E; Monk M
    J Assist Reprod Genet; 1996 Feb; 13(2):163-9. PubMed ID: 8688590
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular mechanisms of TRS instability.
    Parniewski P; Staczek P
    Adv Exp Med Biol; 2002; 516():1-25. PubMed ID: 12611433
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Epigenetic modifications in human fragile X pluripotent stem cells; Implications in fragile X syndrome modeling.
    Gerhardt J
    Brain Res; 2017 Feb; 1656():55-62. PubMed ID: 26475977
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dominant non-coding repeat expansions in human disease.
    Dick KA; Margolis JM; Day JW; Ranum LPW
    Genome Dyn; 2006; 1():67-83. PubMed ID: 18724054
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural Characteristics of Simple RNA Repeats Associated with Disease and their Deleterious Protein Interactions.
    Ciesiolka A; Jazurek M; Drazkowska K; Krzyzosiak WJ
    Front Cell Neurosci; 2017; 11():97. PubMed ID: 28442996
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Myotonic dystrophy type 1 patient-derived iPSCs for the investigation of CTG repeat instability.
    Ueki J; Nakamori M; Nakamura M; Nishikawa M; Yoshida Y; Tanaka A; Morizane A; Kamon M; Araki T; Takahashi MP; Watanabe A; Inagaki N; Sakurai H
    Sci Rep; 2017 Feb; 7():42522. PubMed ID: 28211918
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Myotonic dystrophy: disease repeat range, penetrance, age of onset, and relationship between repeat size and phenotypes.
    Yum K; Wang ET; Kalsotra A
    Curr Opin Genet Dev; 2017 Jun; 44():30-37. PubMed ID: 28213156
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pathogenic determinants and mechanisms of ALS/FTD linked to hexanucleotide repeat expansions in the C9orf72 gene.
    Wen X; Westergard T; Pasinelli P; Trotti D
    Neurosci Lett; 2017 Jan; 636():16-26. PubMed ID: 27619540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Disease-associated repeat instability and mismatch repair.
    Schmidt MHM; Pearson CE
    DNA Repair (Amst); 2016 Feb; 38():117-126. PubMed ID: 26774442
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient CRISPR/Cas9-mediated editing of trinucleotide repeat expansion in myotonic dystrophy patient-derived iPS and myogenic cells.
    Dastidar S; Ardui S; Singh K; Majumdar D; Nair N; Fu Y; Reyon D; Samara E; Gerli MFM; Klein AF; De Schrijver W; Tipanee J; Seneca S; Tulalamba W; Wang H; Chai YC; In't Veld P; Furling D; Tedesco FS; Vermeesch JR; Joung JK; Chuah MK; VandenDriessche T
    Nucleic Acids Res; 2018 Sep; 46(16):8275-8298. PubMed ID: 29947794
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.