These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 26131642)

  • 1. Mathematical and Numerical Modeling of Turbulent Flows.
    Vedovoto JM; Serfaty R; Da Silveira Neto A
    An Acad Bras Cienc; 2015; 87(2):1195-232. PubMed ID: 26131642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel multiblock immersed boundary method for large eddy simulation of complex arterial hemodynamics.
    Anupindi K; Delorme Y; Shetty DA; Frankel SH
    J Comput Phys; 2013 Dec; 254():. PubMed ID: 24179251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sharp interface Lagrangian-Eulerian method for flexible-body fluid-structure interaction.
    Kolahdouz EM; Wells DR; Rossi S; Aycock KI; Craven BA; Griffith BE
    J Comput Phys; 2023 Sep; 488():. PubMed ID: 37214277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the Lagrangian-Eulerian Coupling in the Immersed Finite Element/Difference Method.
    Lee JH; Griffith BE
    J Comput Phys; 2022 May; 457():. PubMed ID: 35300097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries.
    Ge L; Sotiropoulos F
    J Comput Phys; 2007 Aug; 225(2):1782-1809. PubMed ID: 19194533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lagrangian large eddy simulations via physics-informed machine learning.
    Tian Y; Woodward M; Stepanov M; Fryer C; Hyett C; Livescu D; Chertkov M
    Proc Natl Acad Sci U S A; 2023 Aug; 120(34):e2213638120. PubMed ID: 37585463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid finite difference/finite element immersed boundary method.
    Griffith BE; Luo X
    Int J Numer Method Biomed Eng; 2017 Dec; 33(12):. PubMed ID: 28425587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modern discontinuous Galerkin methods for the simulation of transitional and turbulent flows in biomedical engineering: A comprehensive LES study of the FDA benchmark nozzle model.
    Fehn N; Wall WA; Kronbichler M
    Int J Numer Method Biomed Eng; 2019 Dec; 35(12):e3228. PubMed ID: 31232525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An immersed boundary computational model for acoustic scattering problems with complex geometries.
    Sun X; Jiang Y; Liang A; Jing X
    J Acoust Soc Am; 2012 Nov; 132(5):3190-9. PubMed ID: 23145603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large eddy simulation of flows in industrial compressors: a path from 2015 to 2035.
    Gourdain N; Sicot F; Duchaine F; Gicquel L
    Philos Trans A Math Phys Eng Sci; 2014 Aug; 372(2022):20130323. PubMed ID: 25024422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of fluid flow and acoustic field of a supersonic jet using vorticity confinement.
    Sadri M; Hejranfar K; Ebrahimi M
    J Acoust Soc Am; 2018 Sep; 144(3):1521. PubMed ID: 30424640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implicit Subgrid-Scale Modeling of a Mach 2.5 Spatially Developing Turbulent Boundary Layer.
    Araya G; Lagares C
    Entropy (Basel); 2022 Apr; 24(4):. PubMed ID: 35455218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arbitrary Lagrangian-Eulerian unstructured finite-volume lattice-Boltzmann method for computing two-dimensional compressible inviscid flows over moving bodies.
    Hejranfar K; Hashemi Nasab H; Azampour MH
    Phys Rev E; 2020 Feb; 101(2-1):023308. PubMed ID: 32168620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A parallel overset-curvilinear-immersed boundary framework for simulating complex 3D incompressible flows.
    Borazjani I; Ge L; Le T; Sotiropoulos F
    Comput Fluids; 2013 Apr; 77():76-96. PubMed ID: 23833331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An alternative method to implement contact angle boundary condition and its application in hybrid lattice-Boltzmann finite-difference simulations of two-phase flows with immersed surfaces.
    Huang JJ; Wu J; Huang H
    Eur Phys J E Soft Matter; 2018 Feb; 41(2):17. PubMed ID: 29404782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A verified and validated moving domain computational fluid dynamics solver with applications to cardiovascular flows.
    Kjeldsberg HA; Sundnes J; Valen-Sendstad K
    Int J Numer Method Biomed Eng; 2023 Jun; 39(6):e3703. PubMed ID: 37020156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulations of co-axial jet flows on graphics processing units: the flow and noise analysis.
    Markesteijn AP; Karabasov SA
    Philos Trans A Math Phys Eng Sci; 2019 Dec; 377(2159):20190083. PubMed ID: 31607254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the Kelvin-Helmholtz instability in the evolution of magnetized relativistic sheared plasma flows.
    Hamlin ND; Newman WI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043101. PubMed ID: 23679524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chebyshev collocation spectral lattice Boltzmann method for simulation of low-speed flows.
    Hejranfar K; Hajihassanpour M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013301. PubMed ID: 25679733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffuse-interface immersed-boundary framework for conjugate-heat-transfer problems.
    Kumar M; Natarajan G
    Phys Rev E; 2019 May; 99(5-1):053304. PubMed ID: 31212515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.