BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 26131740)

  • 1. DNA Ligases I and III Support Nucleotide Excision Repair in DT40 Cells with Similar Efficiency.
    Paul-Konietzko K; Thomale J; Arakawa H; Iliakis G
    Photochem Photobiol; 2015; 91(5):1173-80. PubMed ID: 26131740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternative Okazaki Fragment Ligation Pathway by DNA Ligase III.
    Arakawa H; Iliakis G
    Genes (Basel); 2015 Jun; 6(2):385-98. PubMed ID: 26110316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional redundancy between DNA ligases I and III in DNA replication in vertebrate cells.
    Arakawa H; Bednar T; Wang M; Paul K; Mladenov E; Bencsik-Theilen AA; Iliakis G
    Nucleic Acids Res; 2012 Mar; 40(6):2599-610. PubMed ID: 22127868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The eukaryotic nucleotide excision repair pathway.
    Costa RM; Chiganças V; Galhardo Rda S; Carvalho H; Menck CF
    Biochimie; 2003 Nov; 85(11):1083-99. PubMed ID: 14726015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crucial role for DNA ligase III in mitochondria but not in Xrcc1-dependent repair.
    Simsek D; Furda A; Gao Y; Artus J; Brunet E; Hadjantonakis AK; Van Houten B; Shuman S; McKinnon PJ; Jasin M
    Nature; 2011 Mar; 471(7337):245-8. PubMed ID: 21390132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA ligase III is critical for mtDNA integrity but not Xrcc1-mediated nuclear DNA repair.
    Gao Y; Katyal S; Lee Y; Zhao J; Rehg JE; Russell HR; McKinnon PJ
    Nature; 2011 Mar; 471(7337):240-4. PubMed ID: 21390131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the Roles of Rho GTPases in Cell DNA Repair by the Nucleotide Excision Repair Pathway.
    Russo LC; Minaya PY; Silva LE; Forti FL
    Methods Mol Biol; 2018; 1821():319-338. PubMed ID: 30062422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mammalian DNA ligases.
    Tomkinson AE; Levin DS
    Bioessays; 1997 Oct; 19(10):893-901. PubMed ID: 9363683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA ligases I and III cooperate in alternative non-homologous end-joining in vertebrates.
    Paul K; Wang M; Mladenov E; Bencsik-Theilen A; Bednar T; Wu W; Arakawa H; Iliakis G
    PLoS One; 2013; 8(3):e59505. PubMed ID: 23555685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleotide excision repair activity varies among murine spermatogenic cell types.
    Xu G; Spivak G; Mitchell DL; Mori T; McCarrey JR; McMahan CA; Walter RB; Hanawalt PC; Walter CA
    Biol Reprod; 2005 Jul; 73(1):123-30. PubMed ID: 15758148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA ligation during excision repair in yeast cell-free extracts is specifically catalyzed by the CDC9 gene product.
    Wu X; Braithwaite E; Wang Z
    Biochemistry; 1999 Mar; 38(9):2628-35. PubMed ID: 10052932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UV-induced DNA damage and DNA repair in ribosomal genes chromatin.
    Pelloux J; Tremblay M; Wellinger RJ; Conconi A
    Methods Mol Biol; 2012; 809():303-20. PubMed ID: 22113285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Base excision repair proteins are required for integrin-mediated suppression of bleomycin-induced DNA breakage in murine lung endothelial cells.
    Rose JL; Reeves KC; Likhotvorik RI; Hoyt DG
    J Pharmacol Exp Ther; 2007 Apr; 321(1):318-26. PubMed ID: 17202402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA ligase I is not essential for mammalian cell viability.
    Han L; Masani S; Hsieh CL; Yu K
    Cell Rep; 2014 Apr; 7(2):316-320. PubMed ID: 24726358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic analyses of single-stranded break repair by human DNA ligase III isoforms reveal biochemical differences from DNA ligase I.
    McNally JR; O'Brien PJ
    J Biol Chem; 2017 Sep; 292(38):15870-15879. PubMed ID: 28751376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Telomeres are partly shielded from ultraviolet-induced damage and proficient for nucleotide excision repair of photoproducts.
    Parikh D; Fouquerel E; Murphy CT; Wang H; Opresko PL
    Nat Commun; 2015 Sep; 6():8214. PubMed ID: 26351258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CPDs and 6-4PPs play different roles in UV-induced cell death in normal and NER-deficient human cells.
    de Lima-Bessa KM; Armelini MG; Chiganças V; Jacysyn JF; Amarante-Mendes GP; Sarasin A; Menck CF
    DNA Repair (Amst); 2008 Feb; 7(2):303-12. PubMed ID: 18096446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of nucleotide excision repair deficient mutants of the entomopathogenic fungus, Beauveria bassiana.
    Chelico L; Khachatourians GG
    J Invertebr Pathol; 2008 May; 98(1):93-100. PubMed ID: 18005981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UV wavelength-dependent regulation of transcription-coupled nucleotide excision repair in p53-deficient human cells.
    Mathonnet G; Leger C; Desnoyers J; Drouin R; Therrien JP; Drobetsky EA
    Proc Natl Acad Sci U S A; 2003 Jun; 100(12):7219-24. PubMed ID: 12775760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arabidopsis ARP endonuclease functions in a branched base excision DNA repair pathway completed by LIG1.
    Córdoba-Cañero D; Roldán-Arjona T; Ariza RR
    Plant J; 2011 Nov; 68(4):693-702. PubMed ID: 21781197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.