These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 26132113)

  • 1. Organic Dye-Sensitized Tandem Photoelectrochemical Cell for Light Driven Total Water Splitting.
    Li F; Fan K; Xu B; Gabrielsson E; Daniel Q; Li L; Sun L
    J Am Chem Soc; 2015 Jul; 137(28):9153-9. PubMed ID: 26132113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pt-free tandem molecular photoelectrochemical cells for water splitting driven by visible light.
    Fan K; Li F; Wang L; Daniel Q; Gabrielsson E; Sun L
    Phys Chem Chem Phys; 2014 Dec; 16(46):25234-40. PubMed ID: 25341620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-performance photoelectrochemical cells based on a binuclear ruthenium catalyst for visible-light-driven water oxidation.
    Zhang L; Gao Y; Ding X; Yu Z; Sun L
    ChemSusChem; 2014 Oct; 7(10):2801-4. PubMed ID: 25139154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visible light driven water splitting in a molecular device with unprecedentedly high photocurrent density.
    Gao Y; Ding X; Liu J; Wang L; Lu Z; Li L; Sun L
    J Am Chem Soc; 2013 Mar; 135(11):4219-22. PubMed ID: 23465192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visible light driven hydrogen production from a photo-active cathode based on a molecular catalyst and organic dye-sensitized p-type nanostructured NiO.
    Li L; Duan L; Wen F; Li C; Wang M; Hagfeldt A; Sun L
    Chem Commun (Camb); 2012 Jan; 48(7):988-90. PubMed ID: 22143335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A photoelectrochemical device for visible light driven water splitting by a molecular ruthenium catalyst assembled on dye-sensitized nanostructured TiO2.
    Li L; Duan L; Xu Y; Gorlov M; Hagfeldt A; Sun L
    Chem Commun (Camb); 2010 Oct; 46(39):7307-9. PubMed ID: 20686714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visible-Light-Driven Water Oxidation on a Photoanode by Supramolecular Assembly of Photosensitizer and Catalyst.
    Li H; Li F; Wang Y; Bai L; Yu F; Sun L
    Chempluschem; 2016 Oct; 81(10):1056-1059. PubMed ID: 31964080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-biasing photoelectrochemical cell for spontaneous overall water splitting under visible-light illumination.
    Chen Q; Li J; Li X; Huang K; Zhou B; Shangguan W
    ChemSusChem; 2013 Jul; 6(7):1276-81. PubMed ID: 23775929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overall Photoelectrochemical Water Splitting using Tandem Cell under Simulated Sunlight.
    Kim JH; Kaneko H; Minegishi T; Kubota J; Domen K; Lee JS
    ChemSusChem; 2016 Jan; 9(1):61-6. PubMed ID: 26668101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Dye-Sensitized Photoelectrochemical Tandem Cell for Light Driven Hydrogen Production from Water.
    Sherman BD; Sheridan MV; Wee KR; Marquard SL; Wang D; Alibabaei L; Ashford DL; Meyer TJ
    J Am Chem Soc; 2016 Dec; 138(51):16745-16753. PubMed ID: 27976887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Embedding biocatalysts in a redox polymer enhances the performance of dye-sensitized photocathodes in bias-free photoelectrochemical water splitting.
    Cheng F; Pavliuk O; Hardt S; Hunt LA; Cai B; Kubart T; Hammarström L; Plumeré N; Berggren G; Tian H
    Nat Commun; 2024 Apr; 15(1):3202. PubMed ID: 38615087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Advances in Visible-Light-Driven Photoelectrochemical Water Splitting: Catalyst Nanostructures and Reaction Systems.
    Chen X; Zhang Z; Chi L; Nair AK; Shangguan W; Jiang Z
    Nanomicro Lett; 2016; 8(1):1-12. PubMed ID: 30464988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoelectrochemical Reduction of CO
    Sahara G; Kumagai H; Maeda K; Kaeffer N; Artero V; Higashi M; Abe R; Ishitani O
    J Am Chem Soc; 2016 Oct; 138(42):14152-14158. PubMed ID: 27690409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient and Stable MoS2 /CdSe/NiO Photocathode for Photoelectrochemical Hydrogen Generation from Water.
    Dong Y; Chen Y; Jiang P; Wang G; Wu X; Wu R; Zhang C
    Chem Asian J; 2015 Aug; 10(8):1660-7. PubMed ID: 26011705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Earth-Abundant Molecular Z-Scheme Photoelectrochemical Cell for Overall Water-Splitting.
    Windle CD; Kumagai H; Higashi M; Brisse R; Bold S; Jousselme B; Chavarot-Kerlidou M; Maeda K; Abe R; Ishitani O; Artero V
    J Am Chem Soc; 2019 Jun; 141(24):9593-9602. PubMed ID: 31135147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutathione-capped gold nanoclusters as photosensitizers. Visible light-induced hydrogen generation in neutral water.
    Chen YS; Kamat PV
    J Am Chem Soc; 2014 Apr; 136(16):6075-82. PubMed ID: 24670058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silicon decorated with amorphous cobalt molybdenum sulfide catalyst as an efficient photocathode for solar hydrogen generation.
    Chen Y; Tran PD; Boix P; Ren Y; Chiam SY; Li Z; Fu K; Wong LH; Barber J
    ACS Nano; 2015 Apr; 9(4):3829-36. PubMed ID: 25801437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A stable dye-sensitized photoelectrosynthesis cell mediated by a NiO overlayer for water oxidation.
    Wang D; Niu F; Mortelliti MJ; Sheridan MV; Sherman BD; Zhu Y; McBride JR; Dempsey JL; Shen S; Dares CJ; Li F; Meyer TJ
    Proc Natl Acad Sci U S A; 2020 Jun; 117(23):12564-12571. PubMed ID: 31488721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system.
    Walczak K; Chen Y; Karp C; Beeman JW; Shaner M; Spurgeon J; Sharp ID; Amashukeli X; West W; Jin J; Lewis NS; Xiang C
    ChemSusChem; 2015 Feb; 8(3):544-51. PubMed ID: 25581231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.